1) АВС данный равнобедренный треугольник. АВ=ВС, Основание АС. Пусть АВ будет х, тогда АС 2х. Р=АВ+ВС+АС, так как Р=18.4 по условию, то 18.4=х+х+2х 18,4= 4х х=4,6 Следовательно АВ=ВС=4.6 Так как основание в два раза больше , то АС= 2*4,6=9,2
2)Дано равнобедренный треугольник АВС, угол ДВС внешний угол при вершине. По свойству внутреннего угла ДВС= угол А+угол С Треугольник АВС равнобедренный по условию, тогда угол А= углу С= х 76=х+х 76=2х х=76:2 х=38 угол А=углу С= 38 так как сумма углов треугольника 180, то угол В= 180-(А+С) В=180-(38+38)=180-76=104 ответ: угол А= 38, угол С= 38, угол В= 104
Считаем, что по условию биссектриса ВD проведена из вершины В треугольника, иначе бы было сказано, что дана биссектриса угла при основании. Тогда: 1. Проводим из произвольной точки В две концентрические окружности радиусами АВ (боковая сторона треугольника) и ВD (биссектриса угла В). 2. Проводим прямую ВD1, равную двум отрезкам ВD. 3. Строим перпендикуляр к середине отрезка ВD1 (то есть перпендикуляр к прямой ВD1, проходящий через точку D). Для этого из точки D1 радиусом АВ проводим окружность и соединяем точки А и С пересечения двух окружностей радиуса АВ. 4. Соединив полученные точки А и С с точкой В получаем искомый равнобедренный треугольник АВС.
Допустим, а - сторона правильного треугольника, то r=a/(2*корень(3)), а R=a/корень(3) => R=2r. Т.к. П*r^2=16П, то r=4 => R=8 => 2*П*R=16*П (см)
ответ: 16П (см)