Эта задача на много проще, чем кажется. Если из центра окружности (который лежит на гипотенузе) опустить перпендикуляры на катеты, то получится квадрат и два треугольника, подобных исходному. Если обозначить радиус окружности r, больший катет большего треугольника b, меньший катет меньшего треугольника a, то стороны исходного треугольника будут такие (a + r, b + r, 35) стороны меньшего треугольника (a, r, 15) стороны большего (r, b, 20) и все эти три треугольника подобны между собой. отсюда a/r = 15/20 = 3/4; то есть все эти три треугольника - египетские (подобные треугольнику со сторонами 3, 4, 5) То есть уже можно написать ответ :) вычислять уже ничего не надо, надо просто "подобрать" коэффициенты подобия, чтобы гипотенузы египетских треугольников были бы 15 и 20. Само собой, это 3 и 4. То есть a = 9, r = 12, b = 16; (получились треугольники 9, 12, 15 и 12, 16, 20) Исходный треугольник имеет стороны 21, 28, 35, его площадь 294; длина полуокружности πr = 12π;
Весь "трюк" в том, что r - одновременно больший катет в одном из подобных треугольников и меньший - в другом.
Обозначим неизвестные стороны параллелепипеда: АА1 = х, АД = у. Если диагонали BD1 и A1C взаимно перпендикулярны, то они определяют фигуру - ромб. Диагональ боковой грани А1В - это гипотенуза в треугольнике А1ОВ и равна √(3²+4²) = 5 см. В свою очередь А1В =√(3²+х²). Приравняем √(3²+х²) = 5 3²+х² = 25 х² = 25-9 = 16 х = 4 см. В ромбе А1ВСД1 сторона А1В равна ребру параллелепипеда А1Д1 и равна 5 см. Диагональ основания ВД = √(ВД1²-х²) = √(36-16) = √20 = 2√5 = 4.472136 Площадь основания равна двум площадям треугольника АВД, которую определяем по формуле Герона: So =2√(р(р-a)(p-b)(p-c)) =2*6.6332 = 13.2665 см², здесь р = 6.236068 см, a = 3 cм, в = 5 см, с = 4.472136 см. Тогда объём параллелепипеда V = So*x = 13,2665*4 = 53.066 cм³.
х= 50°
Объяснение: