ΔОСВ равносторонний. В нем углы при вершинах С и В равны.т.к. ОС=ОВ= радиусы одной окружности. Т.е. равнобедренный получается. но поскольку углы С и В еще и по 60°в, то и угол О в этом треугольнике 60 °. Тогда внешний угол АОВ равен сумме двух внутренних ∠ В и ∠С, с ним не смежными, т.е. он равен 60°+60°=120°, а тогда в равнобедренном треуг. АОВ ∠ А =∠ В= 30 °,
(180°-120°)/2=30°, как углы при основании равнобедренного ΔАОВ, т.к. АО и ВО радиусы одной окружности и ∠DАС = 90°, т.к. радиус, проведенный в точку касания перпендикулярен касательной АD, значит, искомый ∠ DАВ =90°-30°=60°
"Точка D симметрична точке относительно стороны FK" Это означает, что если перегнуть плоскость по прямой FK то точка D и O совпадут. Соединим точку D с точками F и K , отрезки DF=FO=OK=KD тк FO = OK (это одно из свойств диагоналей прямоугольника), DF=FO тк точка D является симметричной точке О относительно прямой FK, и отрезки проведенные из какой-то точки этой прямой к точкам D или F будут равны. А так как у ромба все стороны равны , то фигура FOKD - РОМБ. Периметр. Диагонали ромба равны 8 см и 6 см (по причине симметрии двух точек Д и О) Формула диагоналей через сторону и другую диагональ D-большая диагональ d-меньшая диагональ Возведу всё в квадрат P=4a=4*5=20
"Точка D симметрична точке относительно стороны FK" Это означает, что если перегнуть плоскость по прямой FK то точка D и O совпадут. Соединим точку D с точками F и K , отрезки DF=FO=OK=KD тк FO = OK (это одно из свойств диагоналей прямоугольника), DF=FO тк точка D является симметричной точке О относительно прямой FK, и отрезки проведенные из какой-то точки этой прямой к точкам D или F будут равны. А так как у ромба все стороны равны , то фигура FOKD - РОМБ. Периметр. Диагонали ромба равны 8 см и 6 см (по причине симметрии двух точек Д и О) Формула диагоналей через сторону и другую диагональ D-большая диагональ d-меньшая диагональ Возведу всё в квадрат P=4a=4*5=20
ΔОСВ равносторонний. В нем углы при вершинах С и В равны.т.к. ОС=ОВ= радиусы одной окружности. Т.е. равнобедренный получается. но поскольку углы С и В еще и по 60°в, то и угол О в этом треугольнике 60 °. Тогда внешний угол АОВ равен сумме двух внутренних ∠ В и ∠С, с ним не смежными, т.е. он равен 60°+60°=120°, а тогда в равнобедренном треуг. АОВ ∠ А =∠ В= 30 °,
(180°-120°)/2=30°, как углы при основании равнобедренного ΔАОВ, т.к. АО и ВО радиусы одной окружности и ∠DАС = 90°, т.к. радиус, проведенный в точку касания перпендикулярен касательной АD, значит, искомый ∠ DАВ =90°-30°=60°
ответ 60 °
Объяснение: