З точки А, що розміщена на відстані 16 см від прямої, Проведено дві похилі АВ і АС, які утворюють з прямою кути 45 градусів і 30 градусів. Знайти довжини похилих І проекції похилих на пряму
Точка равноудалённая от катетов образует внутри прямоугольного треугольника квадрат со стороной а, вершины которого - вершина прямого угла, точка на гипотенузе и две точки на катетах, от которых равноудалена заданная. Внутри прямоугольного образовались квадрат и два подобные между собой прямоугольных треугольника, которые подобны исходному треугольнику . пусть Один из катетов прямоугольного треугольника(1) - х и гипотенузой - 40 см, тогда соответствующий катет прямоугольного треугольника(2) - а см и гипотенузой - 30 см. Составим систему уравнений: Тогда один катет исходного прямоугольного треугольника - х+а=56 см. Второй катет по теореме Пифагора: = 1764, второй катет равен
АС - основание, значит угол С лежит при основании. В равнобедренном треугольнике углы при основании равны. Сумма углов треугольника равна 180 градусов. Внешний угол треугольника равен сумме двух углов треугольник, несмежных с ним. Т. к. внешний угол при вершине С - смежный с углом С, их сумма равна 180 градусов. Угол С равен 180-120=60 градусов. Угол А = угол С (углы при основании равнобедренного треугольника) = 60 градусов. Угол В равен 180-(60+60)=60 градусов. Т. к. все углы треугольника равны 60, треугольник равносторонний. В равностороннем треугольнике все стороны равны, следовательно, все стороны в треугольнике АВС равны 42 см (АВ=ВС=АС=42 см).
Тогда один катет исходного прямоугольного треугольника - х+а=56 см. Второй катет по теореме Пифагора: