рассмотрим треугольники abc и a1b1c1, у которых ав = a1b1, ас = a1c1 ∠ а = ∠ а1 (см. рис.2). докажем, что δ abc = δ a1b1c1.
так как ∠ а = ∠ а1, то треугольник abc можно наложить на треугольник а1в1с1 так, что вершина а совместится с вершиной а1, а стороны ав и ас наложатся соответственно на лучи а1в1 и a1c1. поскольку ав = a1b1, ас = а1с1, то сторона ав совместится со стороной а1в1 а сторона ас — со стороной а1c1; в частности, совместятся точки в и в1, с и c1. следовательно, совместятся стороны вс и в1с1. итак, треугольники abc и а1в1с1 полностью совместятся, значит, они равны.
1. Если х- коэффициент пропорциональности, а гипотенуза составлена из отрезков 8 и 6, равна 8+6=14/см/,то катеты тогда 8х и 6х, т.к. биссектриса делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам. По теорем ПИфагора
(8х²)+(6х)²=14²
100х²=14², откуда х=1,4, отрицательный корень не подходит по смыслу задачи. Значит, один катет равен 8*1,4=11,2 см, а другой 1,4*6=8,4см.
2. Медиана, проведенная к гипотенузе, равна ее половине, т.е.
14/2= 7 /см/
3. Высота, проведенная к гипотенузе, может быть найдена, как удвоенная площадь треугольника, деленная на гипотенузу, а площадь найдем как половину произведения катетов, т.е. 11,2*8,4/2=94,08/2=47,04/см²/
Высота, проведенная к гипотенузе, равна
2*47,04/14=47,04/7=6,75/см/