АВ = Рabcd : 4 = 12 : 4 = 3 см ВВ₁ и DD₁ - медианы, значит AD₁ = D₁B = AB₁ = B₁D = 3/2 см
ΔABD равнобедренный, поэтому ∠ABD = ∠ADB, BD₁ = DB₁, BD - общая сторона для ΔDD₁B и ΔBB₁D, значит эти треугольники равны по двум сторонам и углу между ними, ⇒ BB₁ = DD₁.
Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины. Обозначим OD₁ = OB₁ = x, тогда OD = OB = 2x. ΔOBD равнобедренный, значит ∠OBD = ∠ODB = 40°. ∠D₁OB = ∠OBD + ∠ODB = 80° как внешний угол ΔDOB.
Если необходимо числовое значение, а не выражение, можно взять значение cos 80° по таблице, тогда получится: cos 80° ≈ 0,1736 BB₁ = 9 / (2√(5 - 4cos80°)) ≈ 2,2
Дана трапеция АВСД, ВС = 4 см, АД = 6 см. ВД = 5 см, АС = 6 см.
Проведём отрезок СЕ, равный и параллельный диагонали ВД.
Получим треугольник АСЕ со сторонами 5, 6 и 10 см.
cos (AEC) = (100 + 36 - 25)/(2*10*6) = 111/120 = 37/40.
Угол АЕС = arc cos(37/40) = 22,33165°.
Так как угол АЕС равен углу АДВ, то в равнобедренном треугольнике АВД острый угол трапеции ДАВ равен:
∠ДАВ = (180 - 22,33165)/2 = 78,83418°.
Находим сторону трапеции СД = √(36 + 16 - 2*6*4*(37/40)) = √7,6.
Теперь можно определить угол СДА.
cos(CDA) = (36 + 7.6 - 25)/(2*6*√7,6) = 18,6/(12√7,6) = 1,55√7,6 ≈ 0,562244.
Угол (СДА) = arc cos(1,55√7,6) ≈ 0,9737 радиан или 55,7889 градуса.