Вообщем. Из всех данных рассмотрим треугольник CDB. Он прямоугольный, его сторона DB=AD, так как CD делит AB пополам, от сюда следует, что DB равно 6 см. Теперь найдём гипотенузу этого треугольника. Угол DCB равен 30 градусам, так написано в дано. Вспоминаем волшебную теоремку, что катет лежащий на против угла в 30 градусов равен половине гипотенузы. У нас катет на против этого угла равен 6 см, значит гипотенуза равна 12 см, а от сюда мы можем посчитать периметр, так, как противолежащие стороны параллелограмма равны, получается 12+12+12+12=48. ответ: Р=48 см.
Вообщем. Из всех данных рассмотрим треугольник CDB. Он прямоугольный, его сторона DB=AD, так как CD делит AB пополам, от сюда следует, что DB равно 6 см. Теперь найдём гипотенузу этого треугольника. Угол DCB равен 30 градусам, так написано в дано. Вспоминаем волшебную теоремку, что катет лежащий на против угла в 30 градусов равен половине гипотенузы. У нас катет на против этого угла равен 6 см, значит гипотенуза равна 12 см, а от сюда мы можем посчитать периметр, так, как противолежащие стороны параллелограмма равны, получается 12+12+12+12=48. ответ: Р=48 см.
Объяснение:
Угол между боковым ребром и плоскостью основания - угол между боковым ребром и его проекцией на плоскость основания.
Проекция бокового ребра на плоскость основания - это радиус окружности, описанной около основания.
Из этого следует, что R=a√3/3. a - сторона правильного треугольника.
По условию - H=x , a=3x .
R=3x·√3/3=x√3
Из прям-го треугольника SAO
tg ∠ SAO=H/R=x/(x·√3)=1/√3 .
∠ SAO = 30 градусов.
ответ: ∠ SAO = 30 градусов.