1номер.. радиус окружности 2,5 см. найдите ее диаметр. может ли ее хорда быть равной 6 см? ? 2 могут ли касаться две окружности, если их радиусы равны 25 см и 50 см, а расстояние между центрами 60 (решите понятно,и сделайте чертеж)
1 В равнобокой трапеции ABCD: AB=CD= 2d, BC= 5d, AD= 7d. Проведем СК параллельно АВ, тогда АК=ВС=5, АВ=СК=2d, ΔCKD равносторонний CK=CD=KD=2d, уголD=60°, угол А=углуD=60°, угол В=углуС=180°-60°=120°. 2 В параллелограмме биссектриса СР угла BCD образует равнобедренный треугольник PCD () , как катет лежащий против угла 30 в треугольнике CHD. , как катет лежащий против угла 30 в треугольнике BMC. 3 В ромбе ABCD биссектриса CH угла DCA образует два равных прямоугольных треугольника ACH и DCH, при этом Тогда в ромбе 4 треугольник AMD равносторонний, , тогда Треугольник BAM равнобедренный, АВ=АМ, тогда 5 , треугольник MCD равнобедренный, MD=CD=3, , , как накрест лежащие при параллельных прямых АВ и CD, треугольник NAM равнобедренный, AM=AN=4. Тогда ВС=AD=7, АВ=CD=3, периметр .
1 В равнобокой трапеции ABCD: AB=CD= 2d, BC= 5d, AD= 7d. Проведем СК параллельно АВ, тогда АК=ВС=5, АВ=СК=2d, ΔCKD равносторонний CK=CD=KD=2d, уголD=60°, угол А=углуD=60°, угол В=углуС=180°-60°=120°. 2 В параллелограмме биссектриса СР угла BCD образует равнобедренный треугольник PCD () , как катет лежащий против угла 30 в треугольнике CHD. , как катет лежащий против угла 30 в треугольнике BMC. 3 В ромбе ABCD биссектриса CH угла DCA образует два равных прямоугольных треугольника ACH и DCH, при этом Тогда в ромбе 4 треугольник AMD равносторонний, , тогда Треугольник BAM равнобедренный, АВ=АМ, тогда 5 , треугольник MCD равнобедренный, MD=CD=3, , , как накрест лежащие при параллельных прямых АВ и CD, треугольник NAM равнобедренный, AM=AN=4. Тогда ВС=AD=7, АВ=CD=3, периметр .
1. Диаметр = 2*Радиус = 2* 2.5 см = 5 см
Диаметр - это максимально возможная хорда, проходящая через центр,
значит, если диаметр=5см, то хорда не может быть равна 6 см (выходит за пределы окружности)
2. Две окружности касаются, если расстояние между их центрами равно сумме их радиусов.
Если сумма радиусов меньше - то не пересекаются
Если сумма радиусов больше - то они пересекаются, а не касаются!
Р1+Р2 = 25+50 = 75 см,что больше расстояния между центрами окружностей
Значит окружности пересекаются, а не КАСАЮТСЯ!
Удачи!