Слегка такое "нестандартное" решение. Но - только слегка.
Если из одной из точек касания провести диаметр и его конец соединить с другой точкой касания, то получится прямоугольный треугольник (третья сторона - сама хорда, конечно), с гипотенузой 20 и катетом 16, то есть "египетский" треугольник (12,16,20). При этом угол между сторонами 12 и 20 измеряется половиной дуги, стягиваемой хордой.
С другой стороны, если рассмотреть прямоугольный треугольник, образованный хордой (её половинкой), касательной и частью линии, соединяющей точку С с центром, то угол при точке касания тоже измеряется половиной этой дуги. Поэтому это треугольник подобен треугольнику (12, 16, 20), при этом меньший катет равен 16/2 = 8, откуда АС = 20*8/12 = 40/3.
ответ: 12 (ед. длины)
Объяснение:
Одна из формул биссектрисы треугольника
L={2ab•cos(0,5γ)}:(a+b) ,
где L биссектриса, а и b- стороны, γ - угол между ними.
На приведенном рисунке АК - биссектриса ∆ АВС, АС=а, АВ=6, угол А=γ =120°
cos0,5γ=cos60°=1/2
4=2a•6•0,5/(a+6) =>
4a+24=6a =>
АС=a=12 (ед. длины)
Или с тем же результатом найти:
1) По т. косинусов из ∆ АКВ найти КВ
2) по т. синусов из ∆ АКВ угол В
3) из суммы углов треугольника угол С
4) по т. синусов вычислить длину искомой стороны АС