Надо воспользоваться формулой: sin(2α) = 2*sin(α)*cos(α).
Функцию sin(α) выразим через cos(α).
sin(α) = √(1 - cos²(α)).
Подставим в первое уравнение:
-3/5 = 2*√(1 - cos²(α))*cos(α). Возведём обе части в квадрат.
9/25 = 4*(1 - cos²(α))*cos²(α). Приведём к общему знаменателю и раскроем скобки.
9 = 100cos²(α)) - 100cos^4(α).
Получили биквадратное уравнение. Введём замену: cos²(α) = t.
Тогда уравнение имеет вид: 100t² - 100t + 9 = 0.
Ищем дискриминант:
D=(-100)^2-4*100*9=10000-4*100*9=10000-400*9=10000-3600=6400;
Дискриминант больше 0, уравнение имеет 2 корня:
t_1=(√6400-(-100))/(2*100)=(80-(-100))/(2*100)=(80+100)/(2*100)=180/(2*100)=180/200=0,9;
t_2=(-√6400-(-100))/(2*100)=(-80-(-100))/(2*100)=(-80+100)/(2*100)=20/(2*100)=20/200=0,1.
Обратная замена: cos(α) = ±√t.
cos(α1,2) = ±√0,9 ≈ ±0,94868.
cos(α3,4) = ±√0,1 ≈ ±0,31623.
Данным косинусам соответствуют углы:
(α1,2) = 18,43495 и 161,5651 градусов,
(α3,4) = 71,5651 и 108,43495 градусов.
По заданию угол должен быть в промежутке (90° < α < 135°).
ответ: cos α = -√0,1 ≈ -0,31623.
AD = 16 см
Объяснение:
Чтобы боковые стороны трапеции ABCD пересеклись, нужно довести их вверх, сделав таким образом треугольник. Точка пересечения - Р. Образуется треугольник PAD. Мы знаем, что СD=АВ, так как это равнобокая трапеция, а значит АВ = 21 см. Углы А и D в трапеции равны, как при основании, значит треугольник PAD равнобедренный. Получается, что ВС - средняя линия ( делит сторону AP и PD пополам). Средняя линия треугольника равна половине основания (основание AD). Если ВС = 8см, то AD = 16 см.
надеюсь понятно объяснил
3)Из ΔB1DC1- прям.: sin LB1DC1 = B1C1/B1D = 10/20 = 0,5
LB1DC1 = 30⁰.
4) S бок = Р осн·Н= 4·АD ·BB1=4·10·10√2=400√2 (cм²).
5) Сечение - прямоугольник АВ1С1D: Sсеч = AD·DC1
Из Δ В1С1D : DC1= √20²-10²= √300= 10√3
Sсеч = AD·DC1= 10·10√3=100√3 (cм²).