Тема «Теорема о произведении отрезков пересекающихся хорд» 2. Диаметр АВ окружности перпендикулярен к хорде СЕ и пересекает ее в точке М. Найдите СЕ, если ВМ = 12 см, АМ = 6 Рисунок к задаче
ромб - параллелограмм, у кот.все стороны равныдиагонали ромба перпендикулярны и делятся точкой пересечения пополам (как и у любого параллелограмма)диагонали ромба - биссектрисы его угловромб ABCD AB=BC... AB=BD => треугольник ABD - равностороннийв равностороннем треугольнике все стороны и все углы равны => BAD = 180/3=60 = BDA = DBABD - биссектриса CDA => CDA = 2BDA = 2*60 = 120BAD = BCD, CDA = CBA (т.к. ромб - это параллелограмм)вторая диагональ AC = AO + OCиз ABO (AB=10, BO=5) по т.Пифагора AO = корень(10*10-5*5) = корень(100-25) = корень(75) = корень(25*3) = 5*корень(3)
1) Расстояние от оси цилиндра до плоскости - длина перпендикуляра, опущенного из любой точки оси на данную плоскость, на рисунке: ОН =8 см.
2)Сечение - прямоугольник СС'BB' и его площадь равна BC' *CC' = 60 cм,
учитывая, что BC' = 5 см , то CC' = 12 см.
3) V = S осн.* H
S осн = pi* R^2
R- ? Из тр-ка OBB' - равнобедр. прямоуг.: OH - высота, медиана, тогда BH =12:2=6
Из тр-ка OBH' - прямоуг.: R = OB= корень из( OH^2 +BH^2)=
= корень из (8^2+6^2) = 10 см.
Таким образом V = pi* 10^2*5 =500*pi (см ^3)
Объяснение: