вектор ас имеет проекции
ас х = (4 - 0) = 4; ас у = (3 - 3) = 0
ас (4; 0)
вектор bс имеет проекции
bс х = (4 - 4) = 0; bс у = (3 - 0) = 3
bс (0; 3)
найдём скалярное произведение векторов ас и bс
ас · bс = (4 · 0 + 0 · 3) = 0
следовательно векторы ас и вс перпендикулярны.
угол асв - прямой и опирается на диаметр аb
Найдём диаметр ав
IabI = √(0 + 4)² + (3 + 0)² = 5
Радиус окружности равен половине диаметра R = 2,5.
Центр окружности O расположен посредине между точками а и b
Найдём координаты точки О
xО = (0 + 4)/2 = 2; уО = (3 + 0)/2 = 1,5
Запишем уравнение окружности (х - хО)² + (у - уО)² =R²
(х - 2)² + (у - 1,5)² = 2,5²
Оскільки трикутник прямокутний, то АС = √(АВ² - ВС²) = √(17² - 8²) = 15 см.
cosA = AC/AB = 15/17 ≈ 0,882; ∠A ≈ 28°
cosB = BC/AB = 8/17 ≈ 0,471; ∠B ≈ 62°
Також можна було знайти кут В з властивості гострих кутів прямокутного трикутника: ∠B = 90° - ∠А ≈ 90° - 28° = 62°
Відповідь: АС = 15 см; ∠A ≈ 28°; ∠B ≈ 62°.
Подробнее - на -