Вравнобедреном треугольнике абс аб=бс=12 через середину высоты бд проведём отрезок мр паралельны бс причём точка м находится на отрезкке аб а точка р на отрезке ас.найти длину мр
В равнобедренном треугольнике медианы, проведенные к боковым сторонам, равны. Доказательство: Пусть АБВ - равнобедренный треугольник , АК и БЛ - его медианы. Тогда треугольники АКБ и АЛБ равны по второму признаку равенства треугольников. У них сторона АБ общая, стороны АЛ и БК равны как половины боковых сторон равнобедренного треугольника, а углы ЛАБ и КБА равны как углы при основании равнобедренного треугольника. Так как треугольники равны, их стороны АК и ЛБ равны. Но АК и ЛБ - медианы равнобедренного треугольника, проведённые к его боковым сторонам.
В равнобедренном треугольнике медианы, проведенные к боковым сторонам, равны. Доказательство: Пусть АБВ - равнобедренный треугольник , АК и БЛ - его медианы. Тогда треугольники АКБ и АЛБ равны по второму признаку равенства треугольников. У них сторона АБ общая, стороны АЛ и БК равны как половины боковых сторон равнобедренного треугольника, а углы ЛАБ и КБА равны как углы при основании равнобедренного треугольника. Так как треугольники равны, их стороны АК и ЛБ равны. Но АК и ЛБ - медианы равнобедренного треугольника, проведённые к его боковым сторонам.
Доказательство: Пусть АБВ - равнобедренный треугольник , АК и БЛ - его медианы. Тогда треугольники АКБ и АЛБ равны по второму признаку равенства треугольников. У них сторона АБ общая, стороны АЛ и БК равны как половины боковых сторон равнобедренного треугольника, а углы ЛАБ и КБА равны как углы при основании равнобедренного треугольника. Так как треугольники равны, их стороны АК и ЛБ равны. Но АК и ЛБ - медианы равнобедренного треугольника, проведённые к его боковым сторонам.