Мы знаем, во-первых, теорему Пифагора: a^2 + b^2 = c^2, где a,b - катеты, c - гипотенуза. В нашем случае, раз треугольник равнобедренный, то a=b и теорема примет вид: a^2 + a^2 = c^2 2 * a^2 = c^2 Во-вторых, мы знаем выражение для площади прямоугольного треугольника: S = 1/2 * a * b (частный случай формулы площади в общем виде, где S = 1/2 * a * h). Зная, что a = b, площадь примет вид: S = 1/2 * a * a = 1/2 * a^2 Сопоставляя первое и второе выражения, видим, что c^2 = 4 * S Отсюда, подставляя имеющееся значение: c^2 = 4 * 50 = 200 c = корень из 200 = 2 * (корень из 10)
Две параллельные прямые (назовём их а и b) задают плоскость Г (гамма), то есть a и b € Г. Тогда плоскость Г пересекает плоскости А(альфа) и В(бетта) по прямым АБ и А1Б1 соотвественно. По свойству номер 1 параллельных плоскостей (А//В-по усл):"Если 2 параллельные плоскости пересечены третьей, то линии их пересечения параллельны". То есть АБ//А1Б1. Теперь рассмотрим фигуру А1АББ1. В ней АБ//А1Б1(что мы уже доказали) и АА1//ББ1(по условию). Значит, фигура А1АББ1-параллелограмм по определению(противоположные стороны попарно параллельны). В параллелограмме противоположные стороны равны-это одно из его свойств. Тогда АБ=А1Б1(они противоположные)=8 см. ответ:8 см.
a^2 + a^2 = c^2
2 * a^2 = c^2
Во-вторых, мы знаем выражение для площади прямоугольного треугольника: S = 1/2 * a * b (частный случай формулы площади в общем виде, где S = 1/2 * a * h). Зная, что a = b, площадь примет вид:
S = 1/2 * a * a = 1/2 * a^2
Сопоставляя первое и второе выражения, видим, что c^2 = 4 * S
Отсюда, подставляя имеющееся значение:
c^2 = 4 * 50 = 200
c = корень из 200 = 2 * (корень из 10)