1. Угол между наклонной к плоскости и плоскостью - это угол между наклонной и ее проекцией на плоскость. Искомый угол - угол МАО. Высота правильного треугольника равна h=(√3/2)*a = (√3/2)*2√3=3. АО=(1/3)*h = 1 (свойство медианы). Tg(<MAO) = MO/AO = √3.
ответ: α = arctg√3 = 60°
2. Искомый угол - угол между наклонной и ее проекцией, то есть угол АВК. Sin(<ABK) = KA/KB = AC*tg60/5 = 5√3/11. <ABK = arcsin(0,787) ≈ 51,9°.
3. Опустим перпендикуляры SP и SH из точки S к сторонам АВ и АD соответственно. Прямоугольные треугольники APS и AHS равны по гипотенузе и острому углу. Значит АР=АН и АРОН - квадрат. тогда АО = АН*√2 (диагональ квадрата), АS = 2*АН (в треугольнике ASH катет АН лежит против угла 30°, а AS - гипотенуза). Косинус искомого угла (между наклонной AS и плоскостью АВСD, равного отношению проекции наклонной к наклонной) = АО/AS = АН√2/(2*АН) = √2/2.
ответ: искомый угол равен 45°.
Объяснение:
9.9 № 2)ΔАВС-прямоугольный , по т. Пифагора СА=√(13²-12²)=5.
S( тр.)=1/2*CА*СВ, S( тр.)=1/2*5*12=30 (ед²)
9.10 №1 ) ABCD-прямоугольник , S( прям)=CD*DA.
ΔACD-прямоугольный ,по свойству угла 30°⇒ CD=4 ;
cosА=AD/АС , cos30=AD/8 , √3/2=AD/8 , AD=4√3 .
S( прям)=4*4√3=16√3 (ед²)