Построим окружность с центром в точке о и проведем хорды АВ и СД удовлетворяющие условиям задачи.
Найдем радиус данной окружности: Построим радиусы ОА и ОВ, а также ОЕ- расстояние от центра окружности до хорды АВ (ОЕ ⊥ АВ) Рассмотрим получившийся треугольник ОАВ – равнобедренный, так как ОА=ОВ (радиусы окружности). Так как ОАВ равнобедренный, то ОЕ - является и высотой и медианой. Значит АЕ=АВ/2=40/2=20 Рассмотрим треугольник ОАЕ: угол ОЕА – прямой. По теореме Пифагора найдем ОА: ОА= √(АЕ^2+OE^2)= √(20^2+21^2)= √(400+441)= √841=29 – Мы нашли радиус окружности.
Теперь находим расстояние от центра окружности до хорды СД: Построим радиусы ОС и ОД, а также ОF- расстояние от центра окружности до хорды СД (ОF ⊥ СД) Рассмотрим получившийся треугольник ОСД – равнобедренный, так как ОС=ОД (радиусы окружности). Так как ОCД равнобедренный, то ОF - является и высотой и медианой. Значит СF=СД/2=42/2=21 Рассмотрим треугольник ОCF: угол ОFC – прямой. По теореме Пифагора найдем ОF: OF=√(OC^2-CF^2)= √(29^2-21^2)= √(841-441)= √400=20 ответ: расстояние от центра окружности до хорды СД равно 20
Основание пирамиды - правильный треугольник. Следовательно, радиус описанной около него окружности (ОС) равен удвоенному радиусу вписанной окружности R=2*r = 6. А высота основания СН = 9. Высота пирамиды равна 4, а высота основания =9. Следовательно, центр описанного шара лежит ниже плоскости основания пирамиды. Центр шара Q лежит на линии высоты пирамиды и совпадает с центром окружности, описанной около равнобедренного треугольника, боковой стороной которого является боковое ребро пирамиды SC, а высотой – высота пирамиды SO. Рассмотрим прямоугольный треугольник ОCQ. В нем ОQ=Rш-H=Rш-4 (Н - высота пирамиды ,Rш - радиус шара), ОС=R=6 (радиус описанной около основания окружности). Тогда по Пифагору QC²=ОС²+OQ² или Rш²=R²+(Rш-H)². Раскрываем скобки: Rш²=R²+Rш²-2*Rш*Н+H² или Rш=(R²+H²)/2Н. В нашем случае Rш=(36+16)/2*4 = 6,5. Объем шара V=(4/3)*π*R³ =(4/3)*3,14*274,625 + 3449,29/3 ≈1149,76 ≈ 1150. ответ: Vш ≈ 1150.
d2 = √41 = 6,40см
Объяснение:
a = 7см
b = 9см
d1 = 9см
d2 = ?
Найти: d2
Сумма квадратов диагоналей параллелограма равна сумме квадратов его сторон.
d1² + d2² = 2 * a² + 2 * b²
d1² + d2² = 2 * 5² + 2 * 6² = 122
d2² = 122 - d1² = 122 - 9² = 122 - 81 = √41
d2 = √41 = 6,40см