2). Треугольники OBC и AOD равны по двум сторонам и углу между ними (AO=OB; CO=OD по условию; ∠СОВ=AOD -вертикальные) => ∠BCO=∠ABO как соответственные углы в равных треульниках.
AD || BC, т.к. накрест лежащие углы (∠BCO=∠ABO) равны. ЧТД.
3).
AB+AC+BC=34 см. (периметр)
AB=AC (боковые стороны)
BC (основание) =АВ+2 см= АС+ 2 см
BC+ (BC + 2 см)+(ВС+2 см) =34 см
3 ВС=30 см
ВС= 10 см
АВ=АС=10 см +2 см= 12 см
4). Треугольники АОВ и DOC равны по стороне и двум прилежащим углам (АО=ОD; ∠A=∠D по условию; ∠AOB=DOC вертикальные)
5). Проведем отрезок BD. Треугольники ABD и BDC- равнобедренные (AB=AD; BC=CD по условию) => ∠АВD=∠ADB и ∠CBD=∠CDB как углы при основании в р/б треугольнике.
∠В=∠АBD+∠CBD
∠D=∠ADB+∠CDB
А так как ∠АВD=∠ADB и ∠CBD=∠CDB, то ∠В=∠D.
6). Сумма острых углов прямогульного треугольника равна 90°.
∠A+∠B=90°
∠B=∠A-60° по условию
∠A+∠A-60°=90°
2∠A=150°
∠A=75°
∠B=∠A-60°=75°-60°=15°
7). Найдем ∠B. Сумма углов треугольника равна 180°.
∠А+∠В+∠С=180°
70°+55°+∠B=180°
∠B=180°-125°
∠B=55°
То есть ∠В=∠С=55°. А если углы в треуголнике равны, то треугольник равнобедренный. Основание BC.
7.1). Рассмотрим треугольник BMC. Он прямоугольный. Сумма острых углов прямоугольного треугольника равна 90°.
Решить треугольник - найти его характеристики по заданным условиям. Нам надо найти угол BAC, стороны AC и AB. Найдём угол BAC: BAC = 180° - (30° + 105°) = 180° - 135° = 45° По теореме синусов найдём сторону AC: (BC)/(sinBAC) = (AC)/(sinABC); (3√2)/(√2/2) = (AC)/(1/2); AC = (3√2 * 1/2)/(√2/2) = 3√2 * 1/2 * 2/√2 = (3√2)/(√2) = 3 см По той же теореме синусов найдём сторону AB: (AC)/(sinABC) = (AB)/(sinBCA); sin105° = sin(50+50+5) = 0.766 + 0.766 + 0.0871 = 1.6191 (3)/(1/2) = (AB)/(1.6191); AB = (3 * 1.6191)/(1/2) = 3 * 1.6191 * 2 = 9.7146 ≈ 10 см ответ: угол BAC = 45°; AC = 3 см; AB = 10 см
Здравствуйте!
1).
∠1+∠2=180° смежные
∠1=2∠2 по условию
2∠2+∠2=180°
3∠2=180°
∠2=60°
∠1=2∠2=120°
2). Треугольники OBC и AOD равны по двум сторонам и углу между ними (AO=OB; CO=OD по условию; ∠СОВ=AOD -вертикальные) => ∠BCO=∠ABO как соответственные углы в равных треульниках.
AD || BC, т.к. накрест лежащие углы (∠BCO=∠ABO) равны. ЧТД.
3).
AB+AC+BC=34 см. (периметр)
AB=AC (боковые стороны)
BC (основание) =АВ+2 см= АС+ 2 см
BC+ (BC + 2 см)+(ВС+2 см) =34 см
3 ВС=30 см
ВС= 10 см
АВ=АС=10 см +2 см= 12 см
4). Треугольники АОВ и DOC равны по стороне и двум прилежащим углам (АО=ОD; ∠A=∠D по условию; ∠AOB=DOC вертикальные)
5). Проведем отрезок BD. Треугольники ABD и BDC- равнобедренные (AB=AD; BC=CD по условию) => ∠АВD=∠ADB и ∠CBD=∠CDB как углы при основании в р/б треугольнике.
∠В=∠АBD+∠CBD
∠D=∠ADB+∠CDB
А так как ∠АВD=∠ADB и ∠CBD=∠CDB, то ∠В=∠D.
6). Сумма острых углов прямогульного треугольника равна 90°.
∠A+∠B=90°
∠B=∠A-60° по условию
∠A+∠A-60°=90°
2∠A=150°
∠A=75°
∠B=∠A-60°=75°-60°=15°
7). Найдем ∠B. Сумма углов треугольника равна 180°.
∠А+∠В+∠С=180°
70°+55°+∠B=180°
∠B=180°-125°
∠B=55°
То есть ∠В=∠С=55°. А если углы в треуголнике равны, то треугольник равнобедренный. Основание BC.
7.1). Рассмотрим треугольник BMC. Он прямоугольный. Сумма острых углов прямоугольного треугольника равна 90°.
∠С+∠МBC=90°
55°+∠MBC=90°
∠MBC=35°
∠ABC=∠ABM+∠MBC
55°=∠ABM+35°
∠ABM=20°