Точки А и В, расположенные на окружности, делят эту окружность на дуги , градусные меры которых относятся как 4:8. Найдите длины этих дуг, если радиус окружности равен 9см.
(х-а)²+(у-в)²=R²- уравнение окружности где (а;в)-координаты центра окружности R--радиус (х-2)²+(у-3)²=4² (х-2)²+(у-3)²=16 начало координат имеет координаты О(0;0) (х-0)²+(у-0)²=(5/2)² x²+y²=25/4 (R=5/2) X²+y²=25 (R=5) 2. C x=(2+4)÷2 y=(7+5)÷2 x=3 y=6 C (3 ; 6) координаты середины отрезка находятся за формулой х=(х1+х2)÷2; у=(у1+у2)÷2 где (х1; у1) (х2;у2) координаты конца отрезка АВ ((4-2); (7-5)) АВ (2;2) АВ²=(4-2)²+(7-5)²=2²+2²=4+4=8 АВ=√8=√4·2=√2²·2=2√2 y=kx+b уравнение прямой если прямая проходит через точки значит ее координаты удовлетворяют уравнение прямой 5=2k+b (×-1) -5=-2k-b 7=4k+b первое уравнение + второе 2=2k k=2/2=1 5=2·1+b b=5-2=3 y=x+3 уравнение прямой которая проходит через точки А и В
Каноническое уравнение прямой, проходящей через точки А(х1;у1) и В(х2;у2): (X-x1)/(x2-x1)=(Y-y1)/(y2-y1). направляющий вектор этой прямой: p{p1;p2}, или p{(x2-x1);(y2-y1)}. Тогда вектор нормали (перпендикуляр к) этой прямой: n{p2;-p1} или n{(y2-y1);-(x2-x1)}. Этот же вектор - направляющий вектор для прямой L, проходящей через точку М((x1+x2)/2;(y1+y2)/2) - середину прямой АВ. Формула для уравнения прямой, проходящей через точку M((x1+x2)/2;(y1+y2)/2) и имеющей направляющий вектор рm{(y2-y1);-(x2-x1)}, то есть уравнение прямой L: (X-(x1+x2)/2))/(y2-y1)=(Y-(y1+y2)/2)/-(x2-x1) - каноническое уравнение. Или: X(x2-x1) + Y(y2-y1) -(1/2)*[x2²-x1²+y2²-y1²] - общее уравнение с коэффициентами А=(x2-x1), В=(y2-y1) и С= -(1/2)*[x2²-x1²+y2²-y1²].
Второй вариант (для тех, кто еще не знает о направляющих и нормальных векторах, но знают о различных видах уравнений прямых): из канонического уравнения имеем: X(y2-y1)-x1(y2-y1)=Y(x2-x1)-y1(x2-x1) => Y(x2-x1)=X(y2-y1)-y1(x2-x1) => Y=X((y2-y1)/(x2-x1) -x1(y2-y1)/(x2-x1)+y1. Это уравнение прямой с угловым коэффициентом k=(y2-y1)/(x2-x1). Условие перпендикулярности прямых: k1=-1/k. Уравнение прямой L, перпендикулярной прямой AB и проходящей через точку М((x2+x1)/2;(y2+y1)/2)) (середина отрезка АВ), находим по формуле: Y-Ym=k1(X-Xm) или Y-(y2-y1)/2=-((x2-x1)/(y2-y1))*(X-(x2+x1)/2) отсюда общее уравнение прямой L: X(x2-x1)+Y(y2-y1)-(y2²-y1²)/2-(x2²-x1²)/2=0 или X(x2-x1) + Y(y2-y1) -(1/2)*(x2²-x1²+y2²-y1²).
Для проверки решения возьмем точки с реальными координатами и построим график(смотри приложение).
(х-2)²+(у-3)²=4²
(х-2)²+(у-3)²=16
начало координат имеет координаты О(0;0)
(х-0)²+(у-0)²=(5/2)²
x²+y²=25/4 (R=5/2) X²+y²=25 (R=5)
2. C x=(2+4)÷2 y=(7+5)÷2
x=3 y=6
C (3 ; 6) координаты середины отрезка находятся за формулой
х=(х1+х2)÷2; у=(у1+у2)÷2 где (х1; у1) (х2;у2) координаты конца отрезка
АВ ((4-2); (7-5))
АВ (2;2)
АВ²=(4-2)²+(7-5)²=2²+2²=4+4=8
АВ=√8=√4·2=√2²·2=2√2
y=kx+b уравнение прямой если прямая проходит через точки значит ее координаты удовлетворяют уравнение прямой
5=2k+b (×-1) -5=-2k-b
7=4k+b
первое уравнение + второе 2=2k
k=2/2=1
5=2·1+b
b=5-2=3
y=x+3 уравнение прямой которая проходит через точки А и В