Через две пересекающиеся прямые можно провести ровно одну плоскость. Две прямые из условия лежат в некоторой плоскости a. Пусть третья прямая пересекает каждую из них и не проходит через точку A их пересечения. Тогда у третьей прямой есть хотя бы две общие точки с плоскостью a (как раз эти точки пересечения). Известно, что прямая, имеющая с плоскостью хотя бы две общие точки, лежит в этой плоскости. Тогда третья прямая также лежит в а. Следовательно, какую бы прямую, пересекающую две данные прямые и не проходящую через А мы ни выбрали, она будет целиком лежать в плоскости а, что и требовалось доказать.
1) Так как углы В и С параллелограмма -внутренние односторонние при паралле льных АВ, СD и секущей ВС, то их сумма 180,а сумма их половин-углов МВС и МСВ равна 90,то угол ВМС=180-90=90-прямой .Мы доказали известное утверждение: Биссектрисы углов параллелограмма, прилежащих к одной стороне, пересекаются под прямым углом. Аналогично доказываем, что угол ВNС-прямой. 2)Углы КВС и АВС-смежные, их сумма 180,а сумма их половин 90,доказано ещё одно известное свойство: Биссектрисы смежных углов образуют прямой угол. Аналогично угол MCN-прямой . 3) Итак BNCM-прямоугольник, его диагонали равны, то есть МN=ВС=АD. ответ .AD=8