ABC - равносторонний треугольник. - его проекция на плоскость P. . Отложим на перпендикулярах отрезки дм. Тогда BM = 15-10 = 5 дм, CM = 17-10 = 10 дм. Точка О - центр ABC, т.е. точка пересечения его медиан. Медиана правильного треугольника ABC делится точкой O в соотношении AO:OD = 2:1, откуда AO:AD = 2:3 Опустим из точки D перпендикуляр на плоскость в точку . Этот перпендикуляр разделит отрезок NM пополам. Значит медиана треугольника . Отрезок - средняя линия трапеции BCNM. Его длина дм. Треугольники подобны по первому признаку: - общий, . Тогда дм. Учитывая вышеизложенное, получаем дм.
Белу́ха — гора. Самая высокая вершина Южной Сибири в составе Катунского хребта Алтая. Она имеет две острые пирамиды, разделенные широким седлом. Восточная пирамида, более высокая, поднимается на 4506 м над уровнем моря. Обе вершины и седло Белухи покрыты снегом. В районе Белухи находится главный центр оледенения Алтая. Со склонов Белухи спускается шесть больших длинных ледников и более двадцати малых. Первые ледники Белухи открыл Ф. В. Геблер в 1835 году. Его именем назван один из открытых им ледников. Высоту многих горных вершин, включая Белуху, определил известный сибирский исследователь, профессор Томского университета В. В. Сапожников.
Отложим на перпендикулярах отрезки
Точка О - центр ABC, т.е. точка пересечения его медиан. Медиана правильного треугольника ABC делится точкой O в соотношении AO:OD = 2:1, откуда AO:AD = 2:3
Опустим из точки D перпендикуляр на плоскость в точку
Отрезок
Треугольники
Тогда
Учитывая вышеизложенное, получаем
ответ: 14 дм.