Пусть СР=х, тогда АР=4-х. Пусть СК=у, тогда ВК=6-у. Из прямоугольных треугольников квадрат катета ВР можно найти двумя сразу их объединим: ВС²-СР²=АВ²-АР², 6²-х²=5²-(4-х)², 36-х²=25-16+8х-х², х=27/8. Аналогично из прямоугольных тр-ков АСК и АВК: АС²-СК²=АВ²-ВК², 4²-у²=5²-(6-у)², 16-у²=25-36+12у-у², у=27/12. В тр-ке АВС cosC=(АС²+ВС²-АВ²)/(2АС·ВС)=(16+36-25)/(2·4·6)=27/48. В тр-ке CPK по теореме косинусов РК²=СР²+СК²-2СР·СК·cosC. РК²=(27/8)²+(27/12)²-2·27·27·27/(8·12·48)=(729/64)+(729/144)-(27³/48²)=(729/64)+(324/64)-(19683/2304)=(1053/64)-(19683/2304)=2025/256. РК=45/16=2.8125 - это ответ.
Высота равнобедренного треугольника, проведенная к основанию, делит равнобедренный треугольник на два прямоугольных треугольника. И является биссектрисой угла при вершине. Пусть угол при основании х, тогда угол между высотой и боковой стороной равнобедренного треугольника равен (х-15°). Угол при вершине в два раза больше 2(х-15°)
Сумма углов треугольника равна 180° х+ х+2·(х-15°)=180° 4х=210° х=52,5° х-15°=52,5-15=37,5° Угол при вершине равнобедренного треугольника в 2 раза больше, так как высота равнобедренного треугольника является также и биссектрисой. ответ. углы при основании 52,5°; 52,5° и угол при вершине 75°
Пусть СК=у, тогда ВК=6-у.
Из прямоугольных треугольников квадрат катета ВР можно найти двумя сразу их объединим:
ВС²-СР²=АВ²-АР²,
6²-х²=5²-(4-х)²,
36-х²=25-16+8х-х²,
х=27/8.
Аналогично из прямоугольных тр-ков АСК и АВК:
АС²-СК²=АВ²-ВК²,
4²-у²=5²-(6-у)²,
16-у²=25-36+12у-у²,
у=27/12.
В тр-ке АВС cosC=(АС²+ВС²-АВ²)/(2АС·ВС)=(16+36-25)/(2·4·6)=27/48.
В тр-ке CPK по теореме косинусов РК²=СР²+СК²-2СР·СК·cosC.
РК²=(27/8)²+(27/12)²-2·27·27·27/(8·12·48)=(729/64)+(729/144)-(27³/48²)=(729/64)+(324/64)-(19683/2304)=(1053/64)-(19683/2304)=2025/256.
РК=45/16=2.8125 - это ответ.