Вариант 1: 10 см, 13 см, 13 см;
Вариант 2: 16 см, 10 см, 10 см.
Объяснение:
1) Если это боковые стороны, то тогда длина третьей стороны (основания):
36 - 26 = 10 см.
А боковые стороны равны:
26 : 2 = 13 см
2) Если это одна боковая сторона и основание, то тогда составляем систему уравнений и решаем её.
х - основание,
у - боковая сторона,
х + у = 26 - это первое уравнение,
х + 2у = 36 - это второе уравнение.
Умножаем первое уравнение на 2 и из полученного результата вычитаем второе уравнение, получаем:
2х + 2у = 52 - домножили первое уравнение на 2
2х - х + 2у- 2у = 52 -36
х = 16 см - это основание,
тогда боковые стороны равны:
(36 - 16) : 2 = 20 : 2 = 10 см
Так как сумма 2-х сторон больше длины основания, то стороны пересекутся, значит, такой треугольник существует.
Вариант 1: 10 см, 13 см, 13 см;
Вариант 2: 16 см, 10 см, 10 см.
ответ: 80°
Объяснение: если соединить точку А с точкой С, получиться равнобедренный треугольник, так как ОА=ОВ= радиусу, значит угол АВО=углу ВАО=40°. Теперь рассмотрим треугольник АВС. Он также равнобедренный, поскольку касательные соединяются в одной точке, поэтому угол САВ=углу СВА. Найдём эти углы. Так как радиус проведённый к точке касания образует с ней прямой угол 90°, то угол САВ=углу СВА= 90-40=50°. Теперь найдём угол С. Зная что сумма углов треугольника составляет 180°, угол С= 180-2×50=180-100=80°. Итак угол С= 80°
Дано:
AD = 15 см, DC = 12 см ; ∠ABC = 45°
Знайти: АВ
Розв'язання:
1) Знайдемо довжину перпендикуляра AC З трикутника ACD(∠C = 90°) за т. Піфагора: AD² = DC² + AC²
15² = 12² + AC²
AC² = 225-144
AC² = 81
AC = 9 см.
2) Шукаємо похилу АВ з трикутника ABC(∠C) = 90°
sin∠B = AC/AB
sin45° = 9/AB
√2/2 = 9/AB
AB = (9*2)/√2
Позбудемося від ірраціональності у знаменнику дробу
Отримаємо АВ = 9√2
Відповідь: АВ = 9√2