исходя из этих данных можно решить только в случае, если исходный треугольник мре - равнобедренный, с равными сторонами мр и ре.тогда все легко.ра - является в данном случае и биссекриссой и высотой.и у нас 2 прямоугольных треугольника мра и аре, в которых ма=ае=в/2 (т.к. высота в равнобедренном треугольнике делит основание пополам).собствено дальше все решение основано на свойствах прямог. треугольника, а именно.мр - это гипотенуза мра, и равнамр = ма * синус (бетта/2)=в/2 *синус (бетта/2)а ра - это катет того же прямоуг треугольника, и он равен ра=ма/тангенс (бетта/2)=в/2 / тангенс (бетта/2)
но если треугольник мре - произвольный, то боюсь решить не получится, хотя мне кажется он все-таки равнобедренный.удачи
1) Окружность называется вписанной в треугольник, если она касается всех его сторон. Окружность называется описанной около треугольника, если она проходит через все его вершины. Теорема 1. Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.
2) Центром является точка (принято обозначать О) пересечения серединных перпендикуляров к сторонам многоугольника.
3) Если прямоугольный треугольник вписан в окружность, значит его гипотенуза - диаметр. Следовательно по теореме Пифагора:
2R = корень из (36+64) и тогда R = 5 (см).
4) Свойство четырехугольника. Четырехугольник можно описать вокруг тогда и только тогда, когда суммы длин его противоположных сторон равны
Пусть по условию a+c=15. Тогда a+c=b+d; 15=b+d
Периметр четырехугольника: P=a+b+c+d=(a+c)+(b+d)=15+15=30 см
5) прости не смог
Объяснение: