1) у нас равнобедренный треугольник следовательно сторону можно взять за х,тогда периметр равен Р=х+х+с(основание)=2х+с. рассмотрим прямоугольный треугольник,образованный при опущенного перпендикуляра,где наша сторона х является гипотенузой,а высота и половина основание - катетами(помним,что высота в равнобедренном треугольнике является медианой и биссектрисой). по теореме Пифогора х^2=h^2+(c/2)^2 получаем систему получили,что стороны равны 26,26,20 2)Нам дан прямоугольный треугольник,пусть один катет равен х,тогда второй катет равен 17-х. По теореме Пифагора найдем х 13^2=x^2+(17-x)^2 169=x^2+289-34x+x^2 x^2-17x+60=0 получили корни 5 и 12 - это и есть наши катеты ответ:5;12
3)Здесь нужно вспомнить,что в прямоугольном треугольнике середина гипотенузы является центром описанной окружность.Медиана делит сторону пополам,а у нас она проведена к гипотенузе,значит медиана=половине гипотенузы---->гипотенуза равна 10*2=20. возьмем за х один из катетов прямоугольного треугольника,тогда второй катет равен х+4.по теореме Пифагора найдем 20^2=x^2+(x+4)^2 2x^2+8x-384=0 получили корни -16 и 12,т.к сторона не может быть отрицательной,то нам подходит только один корень. ответ: 12; 12+4=16
1. Рассмотрим параллелограмм ABCD. Диагональ AC разделяет его на два треугольника: ABC и ADC. Эти треугольники равны по стороне и двум прилежащим углам (AC-общая сторона, угол 1=углу 2 и угол 3=углу 4 как накрест лежащие углы при пересечении секущей AC и CD, AD и BC соответственно). Поэтому AB=CD, AD= BC и угол B=углу D. Далее, пользуясь равенствами углов 1 и 2, 3 и 4, получаем угол A=углу 1+угол 3=угол 2+угол 4=углу C. 2. Пусть О-точка пересечения диагоналей AC и BD параллелограмма ABCD. Треугольники AOB и COD равны по стороне и двум прилежащим углам (AB=CD как противоположные стороны параллелограмма, угол 1= углу 2 и угол 3=углу 4 как накрест лежащие углы при пересечение параллельных прямых AB и CD секущими AC и BD соответсвенно). Поэтому AO=OC и OB=OD, что и требовалось доказать
рассмотрим прямоугольный треугольник,образованный при опущенного перпендикуляра,где наша сторона х является гипотенузой,а высота и половина основание - катетами(помним,что высота в равнобедренном треугольнике является медианой и биссектрисой). по теореме Пифогора х^2=h^2+(c/2)^2
получаем систему
получили,что стороны равны 26,26,20
2)Нам дан прямоугольный треугольник,пусть один катет равен х,тогда второй катет равен 17-х. По теореме Пифагора найдем х
13^2=x^2+(17-x)^2
169=x^2+289-34x+x^2
x^2-17x+60=0
получили корни 5 и 12 - это и есть наши катеты
ответ:5;12
3)Здесь нужно вспомнить,что в прямоугольном треугольнике середина гипотенузы является центром описанной окружность.Медиана делит сторону пополам,а у нас она проведена к гипотенузе,значит медиана=половине гипотенузы---->гипотенуза равна 10*2=20.
возьмем за х один из катетов прямоугольного треугольника,тогда второй катет равен х+4.по теореме Пифагора найдем
20^2=x^2+(x+4)^2
2x^2+8x-384=0
получили корни -16 и 12,т.к сторона не может быть отрицательной,то нам подходит только один корень.
ответ: 12; 12+4=16