Очень смешная задачка, меня порадовала. Пусть точка пересечения упомянутых в условии отрезков - это точка M. Предположим, что я построил плоскость ACM. Тогда центр окружности, вписанной в треугольник BCD, лежит в этой плоскости (потому что этот центр лежит на прямой AM), и следовательно, в этой плоскости лежит биссектриса угла BCD. Точно также, в этой плоскости ACM лежит центр окружности, вписанной в треугольник ABD (как "конец" отрезка CM), и, следовательно, в плоскости ACM лежит биссектриса угла DAB. Ну, значит, эти биссектрисы имеют общую точку (конец) на отрезке BD. Что означает, в частности, что AD/AB = CD/CB; AD = AB*CD/CB = 8*7/5 = 11,2
Я кучу времени потратил, пытаясь выяснить, не являются ли стороны тетраэдра касательными к одной сфере, но это оказалось ложным следом (и неверно!)
1) 2 (x+3x)=96
2x + 6x = 96
8x = 96
x = 12
2)12×3 = 36
ответ: 12 и 36
Проверка: P = 12×2 + 36×2 = 96