Я даже хотел рисунок сделать, но потом передумал. Итак - Треугольник ABC, CB = 3; CA = 4; AB = 5; M - середина CB, N - середина AB; (кому напомнить, что MN = 2; и MN II AC?); По условию, MN - хорда окружности, которая касается AC; поэтому центр окружности O и точка касания K лежат на перпендикуляре к MN в его середине. То есть CK = 1; AK = 4 - 1 = 3; По условию, окружность пересекает гипотенузу AB в точке N и еще в одной, которую я обозначу P. Нужно найти x = NP. Заранее не ясно, лежит точка P ближе к A или к B. Пусть (я предположу), что к B. Тогда AK^2 = AN*AP; 3^2 = 2,5*(2,5 + x); x = 11/10 = 1,1; Если допустить, что P лежит ближе к A, то x получится отрицательным. То есть полученный ответ - единственный.
В равнобедренном треугольнике биссектрисы, проведённые к боковым сторонам, равны. Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его биссектрисы. Треугольники AKB и ALB равны по второму признаку равенства треугольников. У них сторона AB общая, углы LAB и KBA равны как углы при основании равнобедренного треугольника, а углы LBA и KAB равны как половины углов при основании равнобедренного треугольника. Так как треугольники равны, их стороны AK и LB - биссектрисы треугольника ABC - равны. Теорема доказана. Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны. Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны. Что и требовалось доказать.
Итак -
Треугольник ABC, CB = 3; CA = 4; AB = 5;
M - середина CB, N - середина AB;
(кому напомнить, что MN = 2; и MN II AC?);
По условию, MN - хорда окружности, которая касается AC;
поэтому центр окружности O и точка касания K лежат на перпендикуляре к MN в его середине.
То есть CK = 1; AK = 4 - 1 = 3;
По условию, окружность пересекает гипотенузу AB в точке N и еще в одной, которую я обозначу P. Нужно найти x = NP.
Заранее не ясно, лежит точка P ближе к A или к B. Пусть (я предположу), что к B.
Тогда AK^2 = AN*AP;
3^2 = 2,5*(2,5 + x);
x = 11/10 = 1,1;
Если допустить, что P лежит ближе к A, то x получится отрицательным. То есть полученный ответ - единственный.