Формула длины высоты через составные отрезки гипотенузы: h = √AO*OC, где АО иОС отрезки,равные 25см и 9см. Тогда высота,проведённая к гипотенузе AС прямоугольного треугольника ABC равна √25*9 = √225 = 15. В прямоугольном треугольнике АВО АВ является гипотенузой, а катеты это отрезок АО = 25 и высота ВО = 15.
Из условию следует две позиций , то есть условие не точное! (2 решения предложу) Пусть наш двугранный угол ABD ; AB=6; AD=10; ED=7.5 найти надо BC, очевидно что треугольники подобны так как углы равны то есть угол А общий, то sinA=6/x sinA=7.5/10 6/x=7.5/10 x=4.5; можно конечно по другому решить найти ВЕ
(6+BE)^2+7.5^2=10^2 с него опусти гипотенузу , затем решить систему , но этот вариант утомительный! ответ 4,5 см
Теперь второй вариант этой задачи Можно найти угол между АС и АВ, по теореме косинусов 7.5^2=6^2+10^2-2*6*10*cosa отудого сразу найдем sina=√128639 / 480 теперь площадь S=6*10*√128639/480 /2 =16√128639; теперь BH=2*16√128639 /10 = 16√128639/5
Формула длины высоты через составные отрезки гипотенузы: h = √AO*OC, где АО иОС отрезки,равные 25см и 9см. Тогда высота,проведённая к гипотенузе AС прямоугольного треугольника ABC равна √25*9 = √225 = 15. В прямоугольном треугольнике АВО АВ является гипотенузой, а катеты это отрезок АО = 25 и высота ВО = 15.
Значит гипотенуза АВ треугольника АВО АВ=√25²+15² = √850 = 5√34
Но АВ это как раз больший катет треугольника АВС он равен 5√34
А есть еще теорема о высоте прямоугольного треугольника. Из которой вытекает, что катет
АВ² = АС*АО (квадрат катета равен произведению гипотенузы на прилежащий к этому катету отрезок гипотенузы, на которые высота делит гипотенузу)
Тогда АВ = √34*25 = √850 = 5√34