В основі піраміди лежить прямокутний трикутник з катетом 6 см і гіпотенузою 10 см.Знайдіть об'єм піраміди ,якщо всі бічні ребра нахилені до площини основи під кутом 60
Задача на самом деле очень простая, если знать, что биссектриса отсекает от параллелограмма равнобедренный треугольник. Однако свойство это надо постоянно доказывать. Итак, поведем биссектрису ВК в параллелограмме АВСD. ∠АВК обозначим как ∠1, ∠СВК как ∠2, и ∠ВКА как ∠3. (Так будет проще доказать равнобедренность треугольника). ∠2 = ∠3(по св-ву накрест-лежащих углов при параллельных прямых ВС и АD(параллельность по опр. параллелограмма), а ∠1 = ∠2(т.к. ВК - биссектриса) ⇒ ∠1 = ∠3. ⇒ ΔАВК - равнобедр.(по призн.) ⇒ ВА=АК=14(по опр.равноб.Δ). Тогда СD так же равна 14(опр. параллелогр.) AD=ВС=14+7=21 Тогда найдем периметр: 21+14+21+14=70
Вписываем в исходный треугольник окружность с центром О, проводим касательные перпендикулярно биссектрисам двух острых углов исходного треугольника (на рисунке ST и UV). Эти касательные отрезают два остроугольных треугольника AST и UVC (т.к равнобедренные треугольники с острым углом противолежащим основанию являются остроугольными). В центральном 5-угольнике все его внутренние углы тупые (кроме, может быть угла B). Соединяем вершины этого 5-угольника с центром О. Полученные пять треугольников остроугольные, потому что проведенные отрезки - биссектрисы углов 5-угольника, а биссектрисы делят любой угол на два острых, причем, если угол был тупой, то его половина больше 45 градусов, т.е. это означает что углы при вершине О, острые.
P.S. Можно доказать, что меньше, чем на 7 остроугольных треугольников разрезать нельзя.
Итак, поведем биссектрису ВК в параллелограмме АВСD.
∠АВК обозначим как ∠1, ∠СВК как ∠2, и ∠ВКА как ∠3. (Так будет проще доказать равнобедренность треугольника).
∠2 = ∠3(по св-ву накрест-лежащих углов при параллельных прямых ВС и АD(параллельность по опр. параллелограмма),
а ∠1 = ∠2(т.к. ВК - биссектриса) ⇒ ∠1 = ∠3. ⇒ ΔАВК - равнобедр.(по призн.) ⇒ ВА=АК=14(по опр.равноб.Δ).
Тогда СD так же равна 14(опр. параллелогр.)
AD=ВС=14+7=21
Тогда найдем периметр: 21+14+21+14=70