В выпуклом четырехугольнике ABCD проведите диагональ АС перпендикулярна стороне CD, а диагональ ВD перпендикулярна стороне АВ. Докажите, что эта сумма углов А и С этого четырехугольника равна 180
Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся (не лежат в одной плоскости).
В задаче C₁B и AA₁ являются скрещивающимися прямыми (см. рисунок). Углом между двумя скрещивающимися прямыми называют угол между двумя пересекающимися прямыми, соответственно, параллельными данным скрещивающимся прямым.
В силу этого, так как C₁B || D₁A, то угол между прямыми C₁B и AA₁ равен углу между прямыми D₁A и AA₁, то есть ∠A₁AD₁. В треугольнике ΔAA₁D₁:
∠AD₁A₁+∠D₁A₁A+∠A₁AD₁=180°.
Тогда, так как ∠AA₁D₁=90° и ∠AD₁A₁=55°, то ∠A₁AD₁=180°–90°–55°=35°.
Пустыня в тусклом, жарком свете.За нею — розовая мгла.Там минареты и мечети,Их росписные купола. Там шум реки, базар под сводом,Сон переулков, тень садов —И, засыхая, пахнут мёдомНа кровлях лепестки цветов. Иван Бунин
Налево – шаг, направо – шаг: Кругом – сплошной песок! Пустыня – это не пустяк Ни вдоль, ни поперёк.
Внутри пустыни – пустота. Она ничем не занята Ни летом, ни зимою. Одни барханы – там и тут, Да иногда качнёт верблюд Горбатою спиною.
За шагом – шаг, за шагом - шаг... Пройти пустыню – не пустяк. Ступаю осторожно... Тут можно три часа бродить, Зато уж ноги промочить В пустыне невозможно.
И горло больше не болит, И вообще – здоровый вид Да только мама говорит: – Ну на сегодня хватит! Вот сорванец!.. И как ты мог Пойти в пустыню без сапог?! А вдруг потоп! А вдруг поток... Лежи-ка ты в кровати!
Угол между прямыми C₁B и AA₁ равен 35°
Объяснение:
Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся (не лежат в одной плоскости).
В задаче C₁B и AA₁ являются скрещивающимися прямыми (см. рисунок). Углом между двумя скрещивающимися прямыми называют угол между двумя пересекающимися прямыми, соответственно, параллельными данным скрещивающимся прямым.
В силу этого, так как C₁B || D₁A, то угол между прямыми C₁B и AA₁ равен углу между прямыми D₁A и AA₁, то есть ∠A₁AD₁. В треугольнике ΔAA₁D₁:
∠AD₁A₁+∠D₁A₁A+∠A₁AD₁=180°.
Тогда, так как ∠AA₁D₁=90° и ∠AD₁A₁=55°, то ∠A₁AD₁=180°–90°–55°=35°.