Начнем с самого простого: Сторона правильного шестиугольника равна радиусу описанной около него окружности (свойство). Но можно и так: диагонали правильного шестиугольника разбивают описанную окружность на 6 равных равносторонних треугольника (см. рисунок). Поэтому сторона этого шестиугольника равна радиусу описанной окружности. Rш=10см. Диагональ правильного четырехугольника (квадрата) равна диаметру описанной около него окружности (свойство). D=20см. Тогда его сторона равна Rк= 10√2см. Сторона правильного треугольника равна R*√3 (формула). Или в нашем случае 10√3. Но можно и без формулы: по теореме косинусов. a² = 2*R²-2R²*Cos120° или a²=200*(1+1/2) = 100*3. a=√300 = 10√3см. ответ: сторона треугольника равна 10√3см, четырехугольника10√2см и шестиугольника 10см.
Если есть проблемы с отображением, смотрите снимок ответа, который приложен к нему. ==== Смотрите рисунок, приложенный к ответу. Рассмотрим . Из условия ясно, что он — прямоугольный (так как ). — гипотенуза, — искомый катет, Тангенс острого угла прямоугольного треугольника есть отношение противолежащего катета к прилежащему катету. То есть: Отсюда: Как видим, оба катета неизвестны. Но есть выход — теорема Пифагора. Покажем теорему Пифагора для данного треугольника: Как мы выяснили чуть выше . Заменяем и получаем: Немного поколдуем: Отсюда найдем : Теперь напомню зачем нам нужно было Подставляем вместо новую подстановку: Отлично. В формуле для нахождения ответа не осталось ни одной неизвестной. Подставляем то, что есть в формуле. Из условия: Найдем, наконец, Это ответ.
Сторона правильного шестиугольника равна радиусу описанной около него окружности (свойство). Но можно и так: диагонали правильного шестиугольника разбивают описанную окружность на 6 равных равносторонних треугольника (см. рисунок). Поэтому сторона этого шестиугольника равна радиусу описанной окружности.
Rш=10см.
Диагональ правильного четырехугольника (квадрата) равна диаметру описанной около него окружности (свойство). D=20см.
Тогда его сторона равна Rк= 10√2см.
Сторона правильного треугольника равна R*√3 (формула). Или в нашем случае 10√3.
Но можно и без формулы: по теореме косинусов.
a² = 2*R²-2R²*Cos120° или a²=200*(1+1/2) = 100*3. a=√300 = 10√3см.
ответ: сторона треугольника равна 10√3см, четырехугольника10√2см и шестиугольника 10см.