М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Алина06072003
Алина06072003
25.12.2020 18:14 •  Геометрия

Стороны прямоугольника ABCD равны AB =14 см.
BC = 31 см. На какие отрезки делят сторону BC биссектрисы углов A и D ? Найти их длины решить..

👇
Ответ:
Сchernyh
Сchernyh
25.12.2020

14см, 3см,14 см

Решенине: У прямоугольника все углы =90°, биссектриса из угла D, проведенная к стороне ВС  образует  треугольник : один угол будет равен ∠D/2=45°, так биссектриса делит угол пополам, ∠С=90°. Соотвественно  всё в файле


Стороны прямоугольника ABCD равны AB =14 см. BC = 31 см. На какие отрезки делят сторону BC биссектри
4,6(2 оценок)
Открыть все ответы
Ответ:
qweuio
qweuio
25.12.2020

ответ:

объяснение:

2. прямую можно обозначать одной маленькой латинской буквой (a,b,

или двумя заглавными латинскими буквами, если этими буквами обозначены точки, расположенные на прямой (ab, cd)

3. у прямой много свойств: через одну точку можно провести бесконечно много прямых, через любые две точки можно провести только одну прямую, у любой прямой, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие

4.   прямые, лежащие в одной плоскости и имеющие одну общую точку, которую называют точкой пересечения прямых называют пересекающимися.

6. утверждение, имеющее доказательство, т.е. его надо доказать.

9. их тоже несколько (равные отрезки имеют равные длины, часть отрезка всегда имеет длину, которая меньше длины отрезка, если точки на отрезке делят отрезок на части, то длина отрезка равна сумме длин этих частей.

10. длина отрезка.

11.это точка, которая делит данный отрезок на две равные части.

4,6(25 оценок)
Ответ:
настячччч
настячччч
25.12.2020
Пусть РАВС - данная пирамида, Р-вершина, РО = √13 см - высота,
РА=РВ=РС=6 см

1. Рассмотрим Δ АОР - прямоугольный.
АО²+РО²=РА² - (по теореме Пифагора)
АО = √(РА²-РО²) = √(6² - (√13)²) = √(36-13) = √23 (см)

2. АО является радиусом описанной окружности.
R=(a√3) / 3
a= (3R) / √3 = (3√23)/√3  = √69 (см) - это длина стороны основы.

3. Находим периметр основы.
Р=3а
Р=3√69 см

4. Проводим РМ - апофему и находим ее.
Рассмотрим Δ АМР - прямоугольный.
АМ=0,5АВ=0,5√69 см
АМ²+РМ²=РА² - (по теореме Пифагора)
РМ = √(РА²-АМ²) = √(6² - (0,5√69)²) = √(36-17,25) = √18,75 = 2,5√3 (см)

5. Находим площадь боковой поверхности пирамиды.
Р = 1/2 Р₀l
Р = 1/2 · 3√69 · 2,5√3 = 3,75√207 = 3,75·3√23 = 11,25√23 (см²)

ответ. 11,25 √23 см².
4,4(5 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ