№1 по теореме Фалеса
МN/МP = MK/ME
12/8=MK/6
MK= 9
МP/МN =PE/NK
8/12=PE/NK = 2 : 3
№2
Треугольник АВС подобен треугольнику MNK по второму признаку подобности (по двум пропорцианильным сторонам и равному углу между ними)
AB/MN = BC/NK=12/6=18/9=2 - коэф.подобности,
Значит AB/MN= AC/MK , MK= 12 x 7/6=14
В подобных треугольниках соответствующие углы равны.
угол С =60, угол А =50
№3
треугольник АОС подобен треугольнику ОДВ по первому признаку подобности (по двум равным углам)
Периметры подобных треугольников относятся как соответствующие стороны -
Периметр АОС : периметру ВОД = АО : ОВ=2 :3,
Периметрр АОС = периметр ВОД х 2 /3= 21 х 2/3=14
ВК=BD*sin(BDA)
С другой стороны, AD = AC / 2 = BD / cos(BDA) => AC = 2 * BD / cos(BDA)
Площадь S треугольника АВС:
S = ВК*АС / 2 = ВК*АD = BD*sin(BDA) * BD / cos(BDA) = BD^2 * tg(BDA)
tg(BDA) = S / BD^2; 1 / cos(BDA) = корень (1 + tg^2(BDA)) = корень (1 + S^2 / BD^4)
Таким образом,
AC = 2 * BD / cos(BDA) = 2 * BD * корень (1 + S^2 / BD^4)
АС = 2 * 3 * корень (1 + 12^2 / 3^4) = 6 * корень (1 + 144 / 81) = 6 * корень (225 / 81) = 6 * 15 / 9 = 10.