Градусная мера угла между прямыми АС1 и ВС1
<АС1В= arcsin ( 1/√3 ) = 35,2643896828°
Объяснение:
ребро куба а=1
прямая AC1 диагональ куба
прямая ВС1 диагональ грани ВВ1С1С
у куба все 6 граней квадратные
Диагональ квадрата равна d=a√2
ВС1=1√2=√2
прямая АС1 и ВС1 образует с ребром куба АВ прямоугольный треугольник Δ АВС1, где АС1 гипотенуза, ВС1 и АВ соответственно катеты.
находим по теореме Пифагора
АС1=√ВС1²+АВ²=√(√2)²+1²=√2+1=√3
диагональ АС1=√3
АВ противолежит к углу <АС1В , тогда
sin< АС1В=АВ/АС1=1/√3
Градусная мера угла между прямыми АС1 и ВС1
<АС1В= arcsin ( 1/√3 ) = 35,2643896828°
Градусная мера угла между прямыми АС1 и ВС1
<АС1В= arcsin ( 1/√3 ) = 35,2643896828°
Объяснение:
ребро куба а=1
прямая AC1 диагональ куба
прямая ВС1 диагональ грани ВВ1С1С
у куба все 6 граней квадратные
Диагональ квадрата равна d=a√2
ВС1=1√2=√2
прямая АС1 и ВС1 образует с ребром куба АВ прямоугольный треугольник Δ АВС1, где АС1 гипотенуза, ВС1 и АВ соответственно катеты.
находим по теореме Пифагора
АС1=√ВС1²+АВ²=√(√2)²+1²=√2+1=√3
диагональ АС1=√3
АВ противолежит к углу <АС1В , тогда
sin< АС1В=АВ/АС1=1/√3
Градусная мера угла между прямыми АС1 и ВС1
<АС1В= arcsin ( 1/√3 ) = 35,2643896828°
Расстояние от точки С до прямой а равно СД- длина перпендикуляра к прямой а, и это 20 см, а длина наклонной СА, т.е. гипотенузы в прямоугольном треугольнике равно 40 см, значит, величина угла САД, против которого лежит СД, равна 30°, т.к. если катет в 2 раза короче гипотенузы, то он лежит против угла в 30°.