Из треугольника КВМ имеем то, что он прямоугольный с углом ВМК = 30. Отсюда КВ = половине гипотенузы, те = 2. По теореме Фалеса КМ делит сторону АВ пополам, т.е. АВ = 4. Из прямоугольного треугольника АВД АВ гипотенуза равна удвоенному АВ, как катету против угла в 30 градусов. АД=8. По теореме Пифагора ВД = √64 - 16 = √48 = 4√3 см. Площадь параллелограмма равна 4*4√3 = 16√3 см². Площадь треугольника АВД равна половине площади параллелограмма, а площадь треугольника АМД равна половине площади треугольника АВД., т.к. у них одно основание АД, а высоты относятся как 1:2. Значит, площадь треугольника АМД = 16√3/4 = 4√3 см²
1. Площадь многоугольника существует. 2. Каждому многоугольнику можно поставить в соответствие некоторое положительное число (площадь) так, что выполняются следующие условия: - Равные многоугольники имеют равные площади - Если многоугольник составлен из двух многоугольников, не имеющих общих внутренних точек, то его площадь равна сумме площадей этих многоугольников. - Площадь квадрата со стороной, равной единице длины, равна одной единице измерения площади.
Формулы площади треугольника. 1) Площадь треугольника равна половине произведения основания на высоту. 2) Площадь треугольника равна половине произведения двух его сторон на синус угла между ними. 3) Площадь треугольника равна произведению его полупериметра на радиус вписанной окружности. 4) Площадь треугольника равна произведению трех его сторон, деленному на учетверенный радиус описанной окружности. 5) Формула Герона. где р - полупериметр треугольника р=(а+b+c)/2
Формулы площади параллелограмма. 1) Площадь параллелограмма равна произведению основания на высоту. 2) Площадь параллелограмма равна произведению его соседних сторон на синус угла между ними. 3) Площадь прямоугольника равна произведению двух его соседних сторон. 4) Площадь ромба равна половине произведения его диагоналей.
Площадь параллелограмма равна 4*4√3 = 16√3 см².
Площадь треугольника АВД равна половине площади параллелограмма, а площадь треугольника АМД равна половине площади треугольника АВД., т.к. у них одно основание АД, а высоты относятся как 1:2. Значит, площадь треугольника АМД = 16√3/4 = 4√3 см²