М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kseniamattmn
kseniamattmn
24.09.2022 06:35 •  Геометрия

Известно, что \sin\alpha=11/61.найдите \cos\alpha
и tg\alpha, если \alpha-острый угол


Известно, что =11/61.найдите и tg, если -острый угол​

👇
Ответ:
крутой1337228
крутой1337228
24.09.2022
Для решения этой задачи нам понадобятся три основные тригонометрические функции - синус, косинус и тангенс, а также знание о соотношениях между ними.

Мы имеем информацию о значении синуса угла α: sin(α) = 11/61. Чтобы найти значение косинуса угла α (cos(α)), воспользуемся соотношением между синусом и косинусом:

sin^2(α) + cos^2(α) = 1.

Заменяя sin(α) на значение 11/61, получаем:

(11/61)^2 + cos^2(α) = 1.

Теперь решим уравнение относительно cos^2(α):

121/3721 + cos^2(α) = 1,
cos^2(α) = 1 - 121/3721,
cos^2(α) = 3600/3721.

Применяя квадратный корень к обоим сторонам, получаем:

cos(α) = ± sqrt(3600/3721).

Так как α - острый угол, то cos(α) > 0. Поэтому мы берем положительное значение:

cos(α) = sqrt(3600/3721).

Теперь найдем значение тангенса угла α (tg(α)). Для этого воспользуемся соотношением между синусом и косинусом:

tg(α) = sin(α) / cos(α).

Заменяя sin(α) и cos(α) на найденные значения, получаем:

tg(α) = (11/61) / (sqrt(3600/3721)).

Чтобы упростить это выражение, мы можем умножить числитель и знаменатель на sqrt(3721) (квадратный корень из 3721):

tg(α) = (11/61) * (sqrt(3721) / sqrt(3600)).
tg(α) = (11 * sqrt(3721)) / (61 * sqrt(3600)).

Раскрывая квадратный корень, получаем:

tg(α) = (11 * 61) / (61 * 60).
tg(α) = 11 / 60.

Таким образом, мы нашли значения косинуса и тангенса угла α. Cos(α) = sqrt(3600/3721) и tg(α) = 11/60.
4,4(9 оценок)
Проверить ответ в нейросети
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ