В условии ошибка. Если сторона квадрата 24, то его диагональ 24√2 ≈ 34. Тогда в треугольнике ASC сторона АС больше суммы двух других сторон: 34 > 13 + 13, т.е. треугольник с такими сторонами не существует.
Если нужно найти только стороны. Пирамида правильная, следовательно, её основания квадраты . Сделаем рисунок. Проведем диагонали оснований АС и КМ в той же плоскости, в которой проведена диагональ усеченной пирамиды. Ребра правильной пирамиды равны, основания пирамиды параллельны, ⇒ КМ || АС, и АКМС - равнобедренная трапеция. МН - высота пирамиды и трапеции. Диагонали оснований =диагонали квадратов, и делят их прямые углы пополам. Стороны большего основания равны АС*(sin 45°). АС=АН+НС АН=√(АМ²-МН²)=√(11-7²)=6√2 НС=√(МС² -МН²)=√(9²-7²)=4√2 АС=6√2+4√2=10√2 АВ=АД=ДС=СВ=10√2*√2:2=10 см КМ=АР- НС=6√2-4√2=2√2 см Стороны меньшего основания равны КМ*(sin 45°)=2√2*√2:2=2 см
В условии ошибка. Если сторона квадрата 24, то его диагональ 24√2 ≈ 34. Тогда в треугольнике ASC сторона АС больше суммы двух других сторон: 34 > 13 + 13, т.е. треугольник с такими сторонами не существует.
Встречается такая же задача с другими данными:
Стороны основания правильной четырехугольной пирамиды равны 10, боковые ребра равны 13. Найдите площадь поверхности этой пирамиды.
Пирамида правильная, значит в основании лежит квадрат, а боковые грани - равные равнобедренные треугольники.
Проведем SH⊥CD. Тогда CH = HD (треугольник SCD равнобедренный).
CH = HD = 1/2 CD = 5.
ΔSCH: ∠SHC = 90°, по теореме Пифагора:
SH = √(SC² - CH²) = √(169 - 25) = √144 = 12
Sпов = Sосн + Sбок
Sосн = AD² = 10² = 100
Sбок = 1/2 Pосн · SH = 1/2 · 10 · 4 · 12 = 240
Sпов = 100 + 240 = 340 ед. кв.