Если две прямые параллельны, то при пересечении их с третьей секущей накрест лежащие углы равны.
Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной. Если две прямые параллельны третьей прямой, то они параллельны.
Аксиома, в свою очередь - такая истина,
которую не надо доказывать. В каждой науке есть свои аксиомы, на справедливости которых строят все дальнейшие суждения и их доказательства.
Аксиома параллельных прямых. В одной плоскости с заданной прямой через точку, не лежащую на этой прямой, можно провести только одну прямую, параллельную заданной прямой
Если две прямые на плоскости перпендикулярны одной и той же прямой, то они параллельны.
Получается противоречие из одной - точки Н к прямой с проведены два перпендикуляра. Такое невозможно, поэтому две прямые на плоскости, перпендикулярные одной и той же прямой, параллельны.
Объяснение:
Я думаю что достаточно
5√3 см.
Объяснение:
Дано: ΔАВС, ∠А=120°, ∠С=30°, АС=10 см.
Найти ВН.
ΔАВС - тупоугольный, поэтому высота ВН падает на продолжение стороны АС.
∠АВС=180-∠ВАС-∠С=180-120-30=30°, значит, ΔАВС - равнобедренный, АВ=АС=10 см.
∠ВАН=180-120=60° по свойству смежных углов
тогда ∠АВН=90-60=30°, т.к. ΔАВН - прямоугольный, а сумма острых углов прямоугольного треугольника составляет 90°
катет АН лежит против угла 30°, поэтому он равен половине гипотенузы АВ, т.е. 5 см.
Найдем ВН по теореме Пифагора
ВН=√(АВ²-АН²)=√(100-25)=√75=5√3 см.