ВВ1 - биссектриса угла АВD, т.к. АВ1 = В1D , то по признаку равнобедренного треугольника если медиана и биссектриса, выходящие из одной вершины , совпадают, то этот треугольник равнобедренный => треугольник АВD равнобедренный, тогда АВ = ВD => треугольник ABD - равносторонний! Т.к. АВ = ВD = АD (АВ = АD т.к. АВСD - ромб) => Все углы в равностороннем треугольнике равны по 60 градусов.
В ромбе треугольник АВD = треугольнику ВDС , по 3-ему признаку равенства треугольников (по трем сторонам) (т.к. ВD - общая сторона, АВ = АD = DC = ВС) Отсюда:
Угол А = Углу С = 60 градусов.
АС и BD - диагонали ромба, они же являются и биссектрисами соответствующих углов! Отсюда Угол B = угол ABD + угол DBC = 2 угла ABD = 2 * 60 = 120
1. Если соединить центр вписанной окружности с вершинами, то треугольник "разобьется" на три, и в каждом роль высоты будет играть радиус в точку касания. Отсюда сразу следует нужная формула S = pr; p - полупериметр. Полезно запомнить её именно в этом виде. Важно и то, что такая формула справедлива не только для треугольника, но и для любого выпуклого многоугольника, в который можно вписать окружность. 2. Высота к стороне a равна b*sin(C), откуда S = a*b*sin(C)/2; при этом по теореме синусов c = 2*R*sin(C); или sin(C) = c/(2*R); откуда S = a*b*c/4R чтд.
В ромбе треугольник АВD = треугольнику ВDС , по 3-ему признаку равенства треугольников (по трем сторонам) (т.к. ВD - общая сторона, АВ = АD = DC = ВС) Отсюда:
Угол А = Углу С = 60 градусов.
АС и BD - диагонали ромба, они же являются и биссектрисами соответствующих углов!
Отсюда Угол B = угол ABD + угол DBC = 2 угла ABD = 2 * 60 = 120
Аналогично угол D = 120 градусов.
ответ: 60, 120, 60, 120.
по моему так