При пересечении медиан в треугольнике(точка пересечения пусть будет О), они делят друг друга в отношении 2:1, т.е. AO:OA1=2:1 и BO:OB1=2:1
AO=8 (Отношение два к одному, говорит что в АА1 всего три части, а АО равна двум частям, т.е. 12:3=4, 4*2=8)
BO=6 ( тоже самое, что и с АО, только другие цифры. 9:3=3, 3*2=6)
Т.к. треугольник АОВ прямоугольный(угол АОВ), то по теорме Пифагора:
АB^2= AO^2+BO^2 ( ^ - типа степень)
AB^2= 64+36
AB^2= 100
AB= 10
Пусть параллелограмм будет АВСД, причём уг.А - острый, а уг. В - тупой. Биссектриса ВК делит сторону АД на отрезки АК = 4х и КД = 3х. Тогда АД = 4х + 3х = 7х.
Поскольку ВК - биссектриса. то уг.АВК = уг.КВС.
Вс и АД - противоположные стороны параллелограмма, они параллельны. Внутренние накрест лежащие углы при параллельных прямых ВС и АД и секущей ВК равны, т.е. уг. АВК = уг. АКВ.
Рассмотрим тр-к АВК. Поскольку уг. АВК = уг. АКВ, то он равнобедренный, и
АВ = АК = 4х.
Периметр параллелограмма Р = 2(АВ + АД) = 2(4х + 7х ) = 22х
По условию Р = 88. тогда 88 = 22х
х = 88:22 = 4.
Большая сторона АД = 7х = 7·4 = 28
ответ: большая сторона параллелограмма равна 28см.
Пусть параллелограмм будет АВСД, причём уг.А - острый, а уг. В - тупой. Биссектриса ВК делит сторону АД на отрезки АК = 4х и КД = 3х. Тогда АД = 4х + 3х = 7х.
Поскольку ВК - биссектриса. то уг.АВК = уг.КВС.
Вс и АД - противоположные стороны параллелограмма, они параллельны. Внутренние накрест лежащие углы при параллельных прямых ВС и АД и секущей ВК равны, т.е. уг. АВК = уг. АКВ.
Рассмотрим тр-к АВК. Поскольку уг. АВК = уг. АКВ, то он равнобедренный, и
АВ = АК = 4х.
Периметр параллелограмма Р = 2(АВ + АД) = 2(4х + 7х ) = 22х
По условию Р = 88. тогда 88 = 22х
х = 88:22 = 4.
Большая сторона АД = 7х = 7·4 = 28
ответ: большая сторона параллелограмма равна 28см.
10
Объяснение:
см. фото