Твірна конуса нахилена до площини основи під кутом a. Відстань від вершини конуса до центра вписаної в нього кулі дорівнює d. Знайдіть площу бічної поверхні конуса.
К – точка пересечения касательных. Угол К – прямой. КО2 – биссектриса угла К. А и А, а так же В и В – точки касания окружностей касательных. АА и ВВ – хорды окружностей, пересекают биссектрису в точках М и Н соответственно. О1 и О2 – центры окружностей. На рисунке видно, что расстояние между центрами окружностей О1О2 = r + R. Найдем r. АО1 параллельна КА. Т.к КО1 – биссектриса угла К, то АА перпендикулярна КО1. Следовательно ∠КАМ = ∠МАО1 = 90/2 = 45° Т.к. ∠АМО1 = 90°, то ∠АО1М = 180 – 90 – 45 = 45°. Таким образом, ΔАМО1 – равнобедренный и О1М = АМ = (2√2)/2 = √2. Следовательно, r = √{(√2)² + (√2)²} = √4 = 2. Аналогично для R: О2Н = ВН = (10√2)/2 = 5√2. Тогда R = √{(5√2)² +(5√2)²} = √(25*2) + (25*2) = √100 = 10. Расстояние между центрами окружностей = 2 + 10 = 12
3.В параллелограмме сумма 2-х соседних углов= 180 гр.Делаем вывод,что нам дана сумма противоположных углов.150/2=75 гр один угол.По указанному выше свойству 180-75=105 гр-второй угол.ответ:75,75,105,105 4.Это параллелограммы,т.к. АB||KL,АК||BL и KL||CD ,KD||LC.Противоположные стороны попарно параллельны,это признак параллелограмма. 3.Пусть один из углов=х,тогда другой будет 3х. х+3х=180.4х=180 х=45,3х=135.ответ:45,45,135,135 4.В данном четырехугольнике диагонали равны диаметру,значит,равны между собой.Точкой пересечения делятся пополам.Это признак прямоугольника. 3.Пусть одна из сторон х.Периметр=2х+2*8=36 2х=20 х=10 ответ:8,10,10 4.В данном четырехугольнике диагонали равны диаметру и равны между собой,пересекаются под прямым углом и точкой пересечения делятся пополам.Это признак квадрата.
ответ: Расстояние между центрами окружностей = 12
Объяснение: Смотрите рисунок.
К – точка пересечения касательных. Угол К – прямой. КО2 – биссектриса угла К. А и А, а так же В и В – точки касания окружностей касательных. АА и ВВ – хорды окружностей, пересекают биссектрису в точках М и Н соответственно. О1 и О2 – центры окружностей. На рисунке видно, что расстояние между центрами окружностей О1О2 = r + R. Найдем r. АО1 параллельна КА. Т.к КО1 – биссектриса угла К, то АА перпендикулярна КО1. Следовательно ∠КАМ = ∠МАО1 = 90/2 = 45° Т.к. ∠АМО1 = 90°, то ∠АО1М = 180 – 90 – 45 = 45°. Таким образом, ΔАМО1 – равнобедренный и О1М = АМ = (2√2)/2 = √2. Следовательно, r = √{(√2)² + (√2)²} = √4 = 2. Аналогично для R: О2Н = ВН = (10√2)/2 = 5√2. Тогда R = √{(5√2)² +(5√2)²} = √(25*2) + (25*2) = √100 = 10. Расстояние между центрами окружностей = 2 + 10 = 12