Основанием правильной пирамиды служит равносторонний треугольник со стороной 4 см. Каждое боковое ребро пирамиды составляет с плоскостью основания угол 45º. Найти площадь полной поверхности пирамиды. С РЕШЕНИЕМ С РИСУНКОМ..
Основанием правильной пирамиды служит равносторонний треугольник со стороной 4 см. Каждое боковое ребро пирамиды составляет с плоскостью основания угол 45º.
Найти площадь полной поверхности пирамиды.
Объяснение:
1)S(полн.пир)=S(осн)+S(бок)
S(осн)=S( прав.тр)=(а²√3)/4 , где а-сторона основания,
S(бок)=1/2 Р(осн)*d , где d-апофема.
2) Высота пирамиды МО , в правильной пирамиде, проецируется в центр основания, точку пересечения медиан . Пусть ВН⊥АС.
В ΔАВС: a₃=R√3 , 4=R√3 , R=4/√3 (см) ⇒ r=ОН=2/√3 (см) по т. о точке пересечения медиан.
Т.к по условию ∠МВО=45°, то ΔМВО-прямоугольный , равнобедренный. Значит ВО=МО=4/√3 см.
ΔМОН-прямоугольный, по т. Пифагора МН=√( ОН²+ОМ²),
МН=√( (2/√3)²+(4/√3)²)=2√(5/3) (см) ⇒ d=2√(5/3) см.
Радиус окружности описанной вокруг правильного шестиугольника равен его стороне. Площадь сектора соответствующая его центральному углу равна 60/360=1/6 части площади круга. S=πr²; Sсек.=π*12²/6=24π см². Площадь большей части круга (см. рисунок) - площадь круга за вычетом площади сегмента ограниченного стороной шестиугольника и стягивающей его дугой. Площадь этого сегмента равна площади сектора с углом 60° за вычетом площади равностороннего треугольника со стороной 12 см. Sтр.=а²sin60°/2=144√3/4=36√3 см². Sм.с.=Sсек.- Sтр.=24π-36√3 см². Площадь большей части круга - 144π-(24π-36√3)=120π+36√3 см². В полных единицах ≈ 439,2 см².
Правильный шестиугольник состоит из шести правильных треугольников со стороной, равной стороне шестиугольника. Обозначим её R. Угол меньшего сектора равен 60°, а площадь - одна шестая площади круга 60/360=1/6, Sсект=Sкр/6, Sкр=πR²=144π, Sсект=24π≈75.4 см² Площадь большей части круга (большого сегмента), отделённой стороной шестиугольника равна площади круга минус площадь малого сегмента, лежащего по другую его сторону. Sбс=Sкр-Sмс. Площадь малого сегмента равна площади известного сектора за вычетом площади правильного треугольника. Sмс=Sсект-Sтр Площ. прав. тр-ка Sтр=(R²√3)/4=(144√3)/4=36√3 Sмс=24π-36√3 Sбс=144π-24π+36√3=120π+36√3≈439.34 см²
Основанием правильной пирамиды служит равносторонний треугольник со стороной 4 см. Каждое боковое ребро пирамиды составляет с плоскостью основания угол 45º.
Найти площадь полной поверхности пирамиды.
Объяснение:
1)S(полн.пир)=S(осн)+S(бок)
S(осн)=S( прав.тр)=(а²√3)/4 , где а-сторона основания,
S(бок)=1/2 Р(осн)*d , где d-апофема.
2) Высота пирамиды МО , в правильной пирамиде, проецируется в центр основания, точку пересечения медиан . Пусть ВН⊥АС.
В ΔАВС: a₃=R√3 , 4=R√3 , R=4/√3 (см) ⇒ r=ОН=2/√3 (см) по т. о точке пересечения медиан.
Т.к по условию ∠МВО=45°, то ΔМВО-прямоугольный , равнобедренный. Значит ВО=МО=4/√3 см.
ΔМОН-прямоугольный, по т. Пифагора МН=√( ОН²+ОМ²),
МН=√( (2/√3)²+(4/√3)²)=2√(5/3) (см) ⇒ d=2√(5/3) см.
3) S(бок)=1/2*2√(5/3) *12= 12√(5/3) (см²) .
S(осн)=(4²√3)/4=4√3 ( см²)
S(полн.пир)=4√3 +12√(5/3)=4√3 +4√15 (см²)