ответ: S=6√432=72√3
Объяснение: проведём к основанию треугольника высоту Н. Она разделила треугольник на 2 прямоугольных треугольника, в котором боковая сторона становится гипотенузой 24см. Мы знаем, что угол при основе 30°. По свойствам угла 30°, катет, который лежит против него равен половине гипотенузы, значит проведённая высота = 24÷2=12. По теореме Пифагора найдём половину основания треугольника: 576 -144=432. Половина основания=√432. Основание = 2×√432. Зная высоту найдём площадь треугольника:
S=√432÷2×12=6√432 = 6×√16×√9×√3=
=6×4×3√3=72√3
1) Вписанные углы - угол, вершина которого лежит на окружности, а обе стороны пересекают эту окружность.
2) Вписанный угол равен половине центрального угла, опирающегося на ту же дугу, и равен половине дуги, на которую он опирается, либо дополняет половину центрального угла до 180°.
3) Угол с вершиной в центре окружности называется центральным углом.
4) Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.
5) 180°
6) Внешние углы - это углы, смежные с углами треугольника.
7) Внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним.
8) S=1/2 a*hª-треугольник. Площадь параллелограмма равна произведению высоты и стороны, к которой проведена высота.
9)