М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
умница111133
умница111133
27.05.2023 16:59 •  Геометрия

13. Найдите площадь трапеции, изображенной на клетчатой бумаге с размером
клетки 1см x1 см (см. рис.). ответ дайте в квадратных сантиметрах.​


13. Найдите площадь трапеции, изображенной на клетчатой бумаге с размеромклетки 1см x1 см (см. рис.

👇
Ответ:
echo2
echo2
27.05.2023
Sтр.= (1осн+2осн):2*высота

Sтр.=(2+8)/2*6=30

ответ: 30 см²
4,5(56 оценок)
Открыть все ответы
Ответ:
konor271
konor271
27.05.2023

Объяснение:

Определение

Геометрическим местом точек (сокращенно — ГМТ), обладающих некоторым свойством, называется множество всех точек, которые обладают этим свойством.

Решение задачи на поиск ГМТ должно содержать доказательство того, что все точки множества , указанного в ответе, обладают требуемым свойством, а также наоборот, что все точки, обладающие требуемым свойством, лежат в этом множестве .

Приведем классические и важнейшие известные примеры ГМТ.

Пример

Геометрическое место точек, удаленных от данной точки на заданное положительное расстояние, — окружность (это определение окружности).

Пример

Геометрическое место точек, равноудаленных от данной прямой, — две параллельные прямые.

Пример

Геометрическое место точек, равноудаленных от концов отрезка, — серединный перпендикуляр к отрезку.

 

Пример

Геометрическое место внутренних точек угла, равноудаленных от его сторон, — биссектриса угла.

Два последних примера будут рассмотрены детально в разделах "Серединный перпендикуляр" и "Биссектриса".

Утверждение

ГМТ, обладающих двумя свойствами, является пересечением двух множеств: ГМТ, обладающих первым свойством, и ГМТ, обладающих, вторых свойств

4,8(34 оценок)
Ответ:
sdsdsgttu
sdsdsgttu
27.05.2023

Объяснение:

Определение

Геометрическим местом точек (сокращенно — ГМТ), обладающих некоторым свойством, называется множество всех точек, которые обладают этим свойством.

Решение задачи на поиск ГМТ должно содержать доказательство того, что все точки множества , указанного в ответе, обладают требуемым свойством, а также наоборот, что все точки, обладающие требуемым свойством, лежат в этом множестве .

Приведем классические и важнейшие известные примеры ГМТ.

Пример

Геометрическое место точек, удаленных от данной точки на заданное положительное расстояние, — окружность (это определение окружности).

Пример

Геометрическое место точек, равноудаленных от данной прямой, — две параллельные прямые.

Пример

Геометрическое место точек, равноудаленных от концов отрезка, — серединный перпендикуляр к отрезку.

 

Пример

Геометрическое место внутренних точек угла, равноудаленных от его сторон, — биссектриса угла.

Два последних примера будут рассмотрены детально в разделах "Серединный перпендикуляр" и "Биссектриса".

Утверждение

ГМТ, обладающих двумя свойствами, является пересечением двух множеств: ГМТ, обладающих первым свойством, и ГМТ, обладающих, вторых свойств

4,8(58 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ