Центр вписанной в угол окружности лежит на его биссектрисе. Окружность радиуса 8 - вневписанная, касается сторон двух углов - А и С, ее центр лежит на пересечении биссектрис этих углов, смежных с углами А и С ∆ АВС соответственно,⇒ СО - биссектриса и делит угол НСК пополам. . Центр окружности, вписанной в треугольник АВС, лежит в точке пересечения биссектрис. ВН и СО₁- биссектрисы. СО₁ делит угол ВСН пополам. АСК - развернутый угол и равен 180º Сумма половин углов АСН и ОСН равна половине развернутого угла. Угол ОСО₁=180°:2=90°⇒ ∆ ОСО₁ - прямоугольный с прямым углом С. АН - высота и медиана равнобедренного треугольника АВС, следовательно, делит основание АС на два равных отрезка: СН=АН=6. СН ⊥ АН⇒ является высотой треугольника ОСО₁.
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой;⇒
А) Пирамида правильная, значит в основании лежит квадрат. Боковое ребро пирамиды составляет с высотой и половиной диагонали основания прямоугольный треугольник, в котором высота (катет) лежит против угла 30° и значит равна половине бокового ребра (гипотенуза). h=5см. б) Диагонали квадрата точкой пересечения делятся пополам под прямым углом. Половину диагонали найдем по Пифагору: d=√(10²-5²)=√75=5√3см Сторону найдем по Пифагору: а=√(75+75)=√150=5√6см. ответ: высота пирамиды 5см, сторона основания 5√6см.
13 см.
Объяснение:
Наклонная, перпендикуляр к плоскости и проекция наклонной на эту плоскость образуют прямоугольный треугольник.
Пусть MA = х см, тогда по условию длина наклонной MB = (х + 1) см.
По теореме Пифагора запишем
MB² = MA² + AB²
(х + 1)² = x² + 5²
x² + 2x + 1 = x² + 25
2x = 25 - 1
2x = 24
x = 24 : 2
x = 12
MB = 12+1 = 13 (cм).