ответ: два решения (одно для остроугольного треугольника, другое для тупоугольного...)
1) Р = 256 (см)
2) Р = 56V21 (см)
Объяснение: треугольник АВС, основание ВС=2а (чтобы не возиться с дробями); АВ=АС=b
P = 2a+2b = 2(a+b)
а=b*cos(B); по т.синусов: b=2R*sin(B)
S = 2a*h/2 = ah; h = b*sin(B)
S = P*r/2 = (a+b)*r
(a+b)*r = ab*sin(B)
b(1+cos(B))*r = b*b*sin(B)*cos(B)
(1+cos(B))*r = 2R*sin^2(B)*cos(B)
r/(2R) = (1-cos(B))*cos(B)
обозначим х=cos(B)
x^2 - x + (6/25) = 0
(5x)^2 - 5*(5x) + 6 = 0
по т.Виета корни (3) и (2)
5х=3 ---> х = 0.6
---> sin(B) = V(1-0.36) = 0.8 или
5х=2 ---> х = 0.4
---> sin(B) = V(1-0.16) = 0.2V21
b = 2*50*0.8 = 80 или
b = 2*50*0.2V21 = 20V21
a = 80*0.6 = 48 или
а = 20V21*0.4 = 8V21
P = 2*(80+48) = 128*2 = 256 или
Р = 2*(20+8)*V21 = 56V21
2) 1) ∠А=∠С, как углы при основании равнобедренного треугольника
2) Пусть на одну часть приходиться х град., тогда ∠А=3х град., ∠С=3х град., а ∠В=4х град. Известно, что сумма всех углов треугольника 180°. Имею уравнение:
3х + 3х + 4х = 180
10х = 180
х = 180:10
х = 18, значит на одну часть приходится 18°
3) ∠А=∠С= 3•18=54°
∠В= 4•18=72°
ответ: ∠А=54°, ∠В=72°, ∠С=54°
3) 1) ∠А=∠С, как углы при основании равнобедренного треугольника
2) Пусть ∠В=х град., тогда ∠А=30+х град., ∠С=30+х. Известно, что сумма всех углов треугольника 180°. Имею уравнение:
х + 30 + х + 30 + х = 180
3х + 60 = 180
3х = 180 - 60
3х = 120
х = 120 : 3
х = 40, значит ∠В=40°
3) ∠А=∠С= 30+40 =70°
ответ: ∠А=70°, ∠В=40°, ∠С=70°
Объяснение:
по-моему я всё понятно написала, если что, то спрашивай в коментах
Площадь основания S = πd²/4=25π см², V =hS/3=125π см³
Объяснение: