М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
artem110616
artem110616
15.05.2021 15:57 •  Геометрия

Вправильной треугольной пирамиде sabc с основанием abc известны ребра: ab=8√3, sc=17. найдите угол, образованный плоскостью основания и прямой am, где m - точка пересечения медиан грани sbc/ (, с рисунком)

👇
Ответ:
ArianaLi
ArianaLi
15.05.2021

пусть точка K середина стороны BC.

AK- медиана/биссектриса/высота в равностороннем треугольнике ABC.

найдем AK:

AK=AB*sin(60)=AB*\frac{\sqrt{3} }{2}=8\sqrt{3}*\frac{\sqrt{3} }{2} =4*3=12

----------------------

SK- медиана/биссектриса/высота в равнобедренном треугольнике SBC.

найдем SK:

по теореме пифагора:

SK=\sqrt{SC^2-\frac{CB^2}{4}}=\sqrt{289-48}=\sqrt{241}

MK=\frac{SK}{3}=\frac{\sqrt{241} }{3} (так как точка пересечения медиан делит их в отношении 2 к 1)

значит искомый угол равен:

\alpha =arctg(\frac{\sqrt{241} }{36})

что приблизительно равно 23,32701352...°


Вправильной треугольной пирамиде sabc с основанием abc известны ребра: ab=8√3, sc=17. найдите угол,
4,5(35 оценок)
Открыть все ответы
Ответ:
alinalera71
alinalera71
15.05.2021
Треугольник делится тремя медианами на шесть равновеликих треугольников.
Теорема косинусов:
Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.
Итак, одна медиана делится точкой пересечения на отрезки 8 и 4, вторая на 11,3 и 5,7. По теореме косинусов квадрат стороны треугольника, заключенная между двух медиан, равен 64+127,69 +2*8*11,3*0,866 (так как Cos150° = -0,866) = 348,24. Тогда сторона равна 18,7. Имеем треугольник, три стороны которого равны 8, 11,3 и 18,7. Площадь такого тр-ка по Герону равна
√(19*11*7,7*0,3) = √482,79 = 21,97. Таких площадей в исходном треугольнике три (из шести равновеликих). Значит его площадь равна 65,92.
4,6(92 оценок)
Ответ:
polinak022
polinak022
15.05.2021
Пусть данный треугольник будет АВС, точка пересечения медиан О.
Медианы треугольника точкой пересечения делятся в отношении 2:1, считая от вершины. 
АО=14:3*2=28/3 
СО=18:3*2=12
Медианы делят треугольник на равновеликие треугольники.
Три медианы делят его на 6 равновеликих треугольников. 
Если мы проведем из В к АС еще одну медиану, то
S Δ АОС будет равен 2/6 площади Δ АВС, т.е. 1/3
Площадь треугольника равна половине произведения двух его сторона на синус угла, заключенного между ними. 
Найдем площадь Δ АОС:
S ΔAOC=AO*OC*sin(150°):2=28*12:(3*2*2)=28
S ΔABC=3* S ΔAOC=28*3=84 единиц площади.

Какая наибольшая площадь может быть у треугольника, если длины двух его медиан равны 14 и 18, а угол
4,5(65 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ