Объяснение:
Згідно з теоремою синусів, відношення між сторонами трикутника та синусами протилежних кутів є однаковим. У даному випадку ми маємо два кути - 20° і 10°, і сторону між ними довжиною 16 м.
Позначимо сторони трикутника як a, b і c, а кути як A, B і C. Сторона c відповідає стороні між кутами 20° і 10°, тому c = 16 м.
Використовуючи теорему синусів, ми можемо записати:
sin(A) / a = sin(B) / b = sin(C) / c.
У нашому випадку, ми знаємо кути A = 20°, B = 10° і сторону c = 16 м. Ми шукаємо радіус кола, описаного навколо трикутника, тому нас цікавить сторона b.
Застосуємо теорему синусів для знаходження b:
sin(B) / b = sin(C) / c.
Підставляємо відомі значення:
sin(10°) / b = sin(20°) / 16 м.
Розв'язуючи це рівняння для b, отримуємо довжину сторони b.
Зазначу, що для знаходження радіуса кола, описаного навколо трикутника, потрібно знати ще одну сторону або кут трикутника. У даному випадку, знаючи тільки два кути і одну сторону, ми не можемо однозначно знайти радіус кола.
ответ:
Координаты вершины А: (11,6)
Точка пересечения диагоналей:(2, 3).
Объяснение:
1)Параллелограмм имеет противоположные стороны, которые параллельны и равны друг другу. Таким образом, сторона АВ будет параллельна и равна стороне CD, а сторона АД будет параллельна и равна стороне BC.
Вектор AB равен вектору DC, и вектор AD равен вектору BC. Мы можем использовать эти свойства, чтобы найти координаты вершины А.
Вектор AB = Вектор DC
(x_A - x_B, y_A - y_B) = (x_C - x_D, y_C - y_D)
(x_A - 4, y_A - 5) = (7 - 0, 2 - 1)
Распределение значений в уравнении даст нам:
x_A - 4 = 7
y_A - 5 = 1
x_A = 7 + 4 = 11
y_A = 1 + 5 = 6
Таким образом, координаты вершины А равны (11, 6).
Диагонали параллелограмма делятся пополам в точке пересечения. Мы можем найти координаты этой точки, вычислив среднее значение координат вершин B и D.
Координаты точки пересечения будут:
x = (x_B + x_D) / 2
y = (y_B + y_D) / 2
x = (4 + 0) / 2 = 2
y = (5 + 1) / 2 = 3
Таким образом, точка пересечения диагоналей имеет координаты (2, 3).
Решение прикрепляю в виде фотографии