Радиус окружности, описанной около правильного (равностороннего) треугольника, равен двойному радиусу окружности, вписанной в этот треугольник . R = 2r , где R - радиус описанной окружности, r - радиус вписанной окружности R = 2 * 2 = 4 (cм)
Радиус окружности, вписанной в этот треугольник можно выразить через сторону треугольника
r = a * √3 / 6, где а - сторона правильного треугольника
Дано: сторона основания правильной треугольной пирамиды равна √3, двугранный угол при основании равен 60°.
Проекция апофемы A на основание равна (1/3) высоты h правильного треугольника в основании пирамиды. Находим высоту h = а*cos 30° = √3*(√3/2) = 3/2. 1/3 её равна (3/2)/6 = 3/6 = 1/2. Находим апофему А: А = ((1/3)h)/cos 60° = (1/2)/(1/2) = 1. Площадь So основания равна: So = a²√3/4 = (√3)²√3/4 = 3√3/4. Площадь Sбок боковой поверхности равна: Sбок = (1/2)РА = (1/2)*(3*√3)*1 = 3√3/2. Площадь S полной поверхности правильной треугольной пирамиды равна: S = So+Sбок = 3√3/4 + 3√3/2 = 9√3/4.
516π³
Объяснение:
R- радиус внешней сферы равен D:2=8 см
r - радиус внутренней сферы равен 8-3=5 см
V=4πR³/3
V₁=4π*512/3= 683π
V₂=4π*125/3= 167π
V стенки=683π-167π=516π³