площадь через диаметр считается так 4πd²/4=4π/дм²/
Параллелограмм – четырёхугольник, у которого противоположные стороны попарно параллельны.
Свойства параллелограмма:
1. Противоположные стороны и противоположные углы параллелограмма равны.
2. Диагональ параллелограмма делит его на два равных треугольника.
3. Диагонали параллелограмма делятся точкой пересечения пополам, эта точка является центром симметрии параллелограмма.
4. Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон.
5. Высотой параллелограмма называется перпендикуляр, опущенный из вершины параллелограмма на прямую, содержащую противоположную сторону.
6. Параллелограмм можно вписать в окружность в том случае, если он - прямоугольник.
7. В параллелограмм можно вписать окружность в том случае, если он – ромб.
S=aha
Ha =b sinα
S=ab sinα
S=0,5 d1d2sinφ
Если диагонали трапеции пересекаются под углом 90 градусов, то такая трапеция равнобедренная. Пусть О- точка пересечения диагоналей. Рассмотрим треугольник ВОС. ВО=ОС=х. (<- угол) <ВОС=90 градусов. По т. Пифагора ВО^2+СО^2=ВС^2
х^2+х^2=12^2
2х^2=144
х^2=144/2=72
х=sqrt(72)=6sqrt(2)
ВО=ОС=6sqrt(2) см.
Рассмотрим треугольник АОD. АО=ОD=у. <АОD=90 градусов. По т. Пифагора АО^2+DО^2=АD^2
у^2+у^2=16^2
2у^2=256
у^2=256/2=128
у=sqrt(128)=8sqrt(2)
АО=ОD=8sqrt(2) см.
АС=АО+ОС= 8sqrt(2)+6sqrt(2)= 14sqrt(2).
S=1/2АС*ВD*sin90=1/2*392*1=192
ответ: S=4π(дм)
Объяснение: если диаметр шара=2дм, то его радиус=2/2=1дм. Площадь шара вычисляется по формуле: S=4πr², где r- его радиус:
S=4π×1²=4π(дм)