М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
егор23578584
егор23578584
14.10.2020 19:30 •  Геометрия

Найти объем правильной треугольной пирамиды, если сторона основания равна 3см, а угол между боковым ребром и плоскостью основания равен 45º.

👇
Ответ:
nika06102007
nika06102007
14.10.2020

ответ: V=2,25см³

Объяснение: в основании правильной трёхугольной пирамиды лежит равносторонний треугольник. Обозначим его вершины А В С, вершину пирамиды Д. Найдём площадь основания по формуле: S=a²√3/4, где а- сторона треугольника.

S=3²√3/4=9√3/4см²

Проведём в основании две медианы АН и ВН1. Они пересекаются в точке 0, которая делит медианы в отношении 2:1, начиная от вершины угла. Так как треугольник равносторонний то медианы также являются высотами треугольника и теперь можно вычислить высоту через площадь основания, следуя формуле площади: S=½×a×h, где а- сторона, а h - высота проведённая к этой стороне:

По формуле обратной формуле площади:

h=9√3/4÷3/½=3√3/4×2=3√3/2см

Обозначим пропорции 2:1 как 2х и х и, зная полную величину высоты, составим уравнение:

2х+х=3√3/2

3х=3√3/2

х=3√3/2÷3

х=√3/2

Итак: ОН=√3/2, тогда АО=√3/2×2=√3см

Рассмотрим ∆АДО. В нём АО и ДО - катеты, а АД- гипотенуза. Если <ДАО=45°, то <АДО=90-45=45° (сумма острых углов прямоугольного треугольника составляет 90°). Острые углы в основании равны, поэтому ∆ПДО- равнобедренный и АО=ДО=√3см

Теперь найдём объем пирамиды зная площадь основания и высоту пирамиды ДО: V=⅓×Sосн×h=⅓×9√3/4×√3=

=3√3×√3/4=3×3/4=9/4=2,25см³


Найти объем правильной треугольной пирамиды, если сторона основания равна 3см, а угол между боковым
4,6(33 оценок)
Открыть все ответы
Ответ:
Miller48
Miller48
14.10.2020
Введем обозначения: треугольник ABC, где AB - основание равнобедренного треугольника, С - его вершина. O - центр вписанной окружности, N - середина основания, окружность касается боковой стороны CA в точке K. Если рассмотреть прямоугольный треугольник CNA (угол N - прямой), то нетрудно показать, что |AN| = |KA|, а радиус вписанной окружности равен |OK| и |ON|. 

Из условия не очень понятно точка K делит сторону CA так, что |CK|/|KA| = 9/8 или 8/9. Рассмотрим сначала первый случай. Пусть |CK| = 9x, |KA| = |AN| = 8x. Тогда по теореме Пифагора высота треугольника |CN| = корень((9x+8x)^2 - (8x)^2) = x*корень(81 + 2*9*8) = x*корень(225) = 15x.

Радиус вписанного круга равен |OK|, длину которого нетрудно найти из подобия: |OK|/|KС| = |AN|/|CN|:  

|OK| = |KС|*|AN|/|CN| = 9x*8x/15x = 24x/5

Для того, чтобы наконец избавиться от x вспомним, что длина окружности 48п заданная в условии равна 2пR, то есть:
48п = 2п*24x/5
или
x = 5

Основание треугольника |AB| = 2*8x = 80, высота |CN| = 15x = 75, площадь 80*75/2 = 3000,.. ну если я ничего не напутал. :)
4,4(5 оценок)
Ответ:
dimapm04
dimapm04
14.10.2020
1) Пусть ABCD - прямоугольная трапеция, в которую вписана окружность. CF=4 см и FD=25 см.
2) Площадь трапеции можно найти по формуле:
S=(AD+BC)*AB/2, где AD и BC - основания трапеции, AB - высота трапеции.
3) Можно использовать следующее свойство для прямоугольной трапеции, в которую вписана окружность:
Если точка касания делит боковую сторону на отрезки m и n, то радиус вписанной окружности равен r=√(mn).
Находим радиус вписанной окружности:
r=√(4*25)=√100=10 (см).
Значит, высота АВ=2r=2*10=20 (см).
4) Так как центр вписанной окружности является точкой пересечения биссектрис углов трапеции, то KC=CF=4 см, FD=DE=25 см.
5) AMOE=MBKO - квадраты со стороной, равной радиусу вписанной окружности, т.е. AE=BK=10 см.
Таким образом, получаем, AD=10+25=35 (см), BC=10+4=14 (см).
6) Находим площадь трапеции:
S=(AD+BC)*AB/2=(35+14)*20/2=49*10=490 (cм²).

Еще площадь прямоугольной трапеции, в которую вписана окружность можно найти по отдельной формуле: 
S=AD*BC (произведение оснований).
S=35*14=490 (см²).
ответ: 490 см².

Упрямокутну трапецію вписано коло точка дотику ділить більшу з бічних сторін трапеції на відрізки за
4,4(85 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ